{"title":"新示踪剂在首次人体试验中的最新进展。","authors":"Yuji Nakamoto, Yoshitaka Inui, Masatoshi Hotta, Hiroshi Wakabayashi, Hirofumi Hanaoka","doi":"10.1007/s12149-024-01979-5","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advancements in the development of positron emission tomography (PET) tracers have significantly enhanced our ability to image neuroinflammatory processes and neurotransmitter systems, which are vital for understanding and treating neurodegenerative and psychiatric disorders. Similarly, innovative tracers in oncology provide detailed images of the metabolic and molecular characteristics of tumors, which are crucial for tailoring targeted therapies and monitoring responses, including radiotherapy. Notable advancements include programmed death ligand 1 (PD-L1)-targeting agents for lung cancer, prostate-specific membrane antigen-based tracers for prostate cancer, chemokine receptor-targeting agents for hematological malignancies, human epidermal growth factor receptor 2 (HER2)-targeting tracers for various cancers, Claudin 18 based tracers for epithelial tumors, glutamine tracers for colorectal cancer, and ascorbic acid analogs for assessing cancer metabolism and therapy efficacy. Additionally, novel tracers have been developed for non-neurological and non-oncological applications, including adrenal imaging, amyloidosis, and human immunodeficiency virus (HIV) infection. This overview focuses on the newly developed tracers, particularly those used in neurology and oncology.</p></div>","PeriodicalId":8007,"journal":{"name":"Annals of Nuclear Medicine","volume":"38 11","pages":"877 - 883"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12149-024-01979-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent advancements in new tracers from first-in-human studies\",\"authors\":\"Yuji Nakamoto, Yoshitaka Inui, Masatoshi Hotta, Hiroshi Wakabayashi, Hirofumi Hanaoka\",\"doi\":\"10.1007/s12149-024-01979-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent advancements in the development of positron emission tomography (PET) tracers have significantly enhanced our ability to image neuroinflammatory processes and neurotransmitter systems, which are vital for understanding and treating neurodegenerative and psychiatric disorders. Similarly, innovative tracers in oncology provide detailed images of the metabolic and molecular characteristics of tumors, which are crucial for tailoring targeted therapies and monitoring responses, including radiotherapy. Notable advancements include programmed death ligand 1 (PD-L1)-targeting agents for lung cancer, prostate-specific membrane antigen-based tracers for prostate cancer, chemokine receptor-targeting agents for hematological malignancies, human epidermal growth factor receptor 2 (HER2)-targeting tracers for various cancers, Claudin 18 based tracers for epithelial tumors, glutamine tracers for colorectal cancer, and ascorbic acid analogs for assessing cancer metabolism and therapy efficacy. Additionally, novel tracers have been developed for non-neurological and non-oncological applications, including adrenal imaging, amyloidosis, and human immunodeficiency virus (HIV) infection. This overview focuses on the newly developed tracers, particularly those used in neurology and oncology.</p></div>\",\"PeriodicalId\":8007,\"journal\":{\"name\":\"Annals of Nuclear Medicine\",\"volume\":\"38 11\",\"pages\":\"877 - 883\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12149-024-01979-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12149-024-01979-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Medicine","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12149-024-01979-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Recent advancements in new tracers from first-in-human studies
Recent advancements in the development of positron emission tomography (PET) tracers have significantly enhanced our ability to image neuroinflammatory processes and neurotransmitter systems, which are vital for understanding and treating neurodegenerative and psychiatric disorders. Similarly, innovative tracers in oncology provide detailed images of the metabolic and molecular characteristics of tumors, which are crucial for tailoring targeted therapies and monitoring responses, including radiotherapy. Notable advancements include programmed death ligand 1 (PD-L1)-targeting agents for lung cancer, prostate-specific membrane antigen-based tracers for prostate cancer, chemokine receptor-targeting agents for hematological malignancies, human epidermal growth factor receptor 2 (HER2)-targeting tracers for various cancers, Claudin 18 based tracers for epithelial tumors, glutamine tracers for colorectal cancer, and ascorbic acid analogs for assessing cancer metabolism and therapy efficacy. Additionally, novel tracers have been developed for non-neurological and non-oncological applications, including adrenal imaging, amyloidosis, and human immunodeficiency virus (HIV) infection. This overview focuses on the newly developed tracers, particularly those used in neurology and oncology.
期刊介绍:
Annals of Nuclear Medicine is an official journal of the Japanese Society of Nuclear Medicine. It develops the appropriate application of radioactive substances and stable nuclides in the field of medicine.
The journal promotes the exchange of ideas and information and research in nuclear medicine and includes the medical application of radionuclides and related subjects. It presents original articles, short communications, reviews and letters to the editor.