Yuanhong Deng , Xiaoyan Li , Zhigang Wang , Fangzhong Shi , Shaojie Zhao , Guangrong Hu
{"title":"自然季节性冻融过程对高山草地土壤质量的影响土壤功能的启示","authors":"Yuanhong Deng , Xiaoyan Li , Zhigang Wang , Fangzhong Shi , Shaojie Zhao , Guangrong Hu","doi":"10.1016/j.soilbio.2024.109642","DOIUrl":null,"url":null,"abstract":"<div><div>Effects of freeze-thaw cycles on nutrient cycling and microbial activity have been well documented in laboratory simulations; however, field evidence remains insufficient, and studies regarding their effects on soil quality index (SQI)—as evaluated by soil functions that are influenced by multiple soil properties—are scarce. Therefore, we conducted spatiotemporal paired soil profile surveys along a freeze-thaw intensity gradient covering six grassland types. Results are as follows: 1) After a seasonal freeze-thaw event, soil properties across the 0–80 cm profile changed by 0.96%–31.02% (physical), −34.29%–44.04% (chemical), and −70.46%–272.97% (biological), with change rates varying across soil layers. 2) A function-based framework was employed to assess SQI<sub>0–30</sub> under freeze-thaw conditions, and the reliability of the function indices and SQI<sub>0–30</sub> was validated. 3) Compared to pre-freezing levels, post-thawing water retention and regulation index changed negligibly (+5.31%), carbon sequestration index remained stable (+2.52%), and the primary productivity index declined noticeably (−9.43%). Conversely, the nutrient supply and cycling index increased notably (+23.89%) due to elevated total potassium, catalase activity, and urease activity. The biodiversity provision index improved substantially (+95.63%) owing to increased dissolved organic carbon. Collectively, the SQI<sub>0–30</sub> increased evidently by 11.78%. 4) These alterations were associated with different freeze-thaw indicators, and the daily freeze-thaw temperature difference at 0–10 cm during the “freezing→frozen→thawing” period explained 55% of the SQI<sub>0–30</sub> change, surpassing impacts of meteorological factors (precipitation, air temperature, and snow depth). Our study suggests that natural seasonal freeze-thaw events can raise alpine grassland soil quality, with varied functional responses. The identified soil indicators and functions sensitive to freeze-thaw cycles facilitate the research on seasonal dynamics of alpine grassland soil and its multi-objective management, and the quantitative relationships with freeze-thaw indicators provide new insights for regional soil mapping in frozen areas under climate change.</div></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"200 ","pages":"Article 109642"},"PeriodicalIF":9.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural seasonal freeze-thaw processes influenced soil quality in alpine grasslands: Insights from soil functions\",\"authors\":\"Yuanhong Deng , Xiaoyan Li , Zhigang Wang , Fangzhong Shi , Shaojie Zhao , Guangrong Hu\",\"doi\":\"10.1016/j.soilbio.2024.109642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effects of freeze-thaw cycles on nutrient cycling and microbial activity have been well documented in laboratory simulations; however, field evidence remains insufficient, and studies regarding their effects on soil quality index (SQI)—as evaluated by soil functions that are influenced by multiple soil properties—are scarce. Therefore, we conducted spatiotemporal paired soil profile surveys along a freeze-thaw intensity gradient covering six grassland types. Results are as follows: 1) After a seasonal freeze-thaw event, soil properties across the 0–80 cm profile changed by 0.96%–31.02% (physical), −34.29%–44.04% (chemical), and −70.46%–272.97% (biological), with change rates varying across soil layers. 2) A function-based framework was employed to assess SQI<sub>0–30</sub> under freeze-thaw conditions, and the reliability of the function indices and SQI<sub>0–30</sub> was validated. 3) Compared to pre-freezing levels, post-thawing water retention and regulation index changed negligibly (+5.31%), carbon sequestration index remained stable (+2.52%), and the primary productivity index declined noticeably (−9.43%). Conversely, the nutrient supply and cycling index increased notably (+23.89%) due to elevated total potassium, catalase activity, and urease activity. The biodiversity provision index improved substantially (+95.63%) owing to increased dissolved organic carbon. Collectively, the SQI<sub>0–30</sub> increased evidently by 11.78%. 4) These alterations were associated with different freeze-thaw indicators, and the daily freeze-thaw temperature difference at 0–10 cm during the “freezing→frozen→thawing” period explained 55% of the SQI<sub>0–30</sub> change, surpassing impacts of meteorological factors (precipitation, air temperature, and snow depth). Our study suggests that natural seasonal freeze-thaw events can raise alpine grassland soil quality, with varied functional responses. The identified soil indicators and functions sensitive to freeze-thaw cycles facilitate the research on seasonal dynamics of alpine grassland soil and its multi-objective management, and the quantitative relationships with freeze-thaw indicators provide new insights for regional soil mapping in frozen areas under climate change.</div></div>\",\"PeriodicalId\":21888,\"journal\":{\"name\":\"Soil Biology & Biochemistry\",\"volume\":\"200 \",\"pages\":\"Article 109642\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Biology & Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038071724003316\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038071724003316","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Natural seasonal freeze-thaw processes influenced soil quality in alpine grasslands: Insights from soil functions
Effects of freeze-thaw cycles on nutrient cycling and microbial activity have been well documented in laboratory simulations; however, field evidence remains insufficient, and studies regarding their effects on soil quality index (SQI)—as evaluated by soil functions that are influenced by multiple soil properties—are scarce. Therefore, we conducted spatiotemporal paired soil profile surveys along a freeze-thaw intensity gradient covering six grassland types. Results are as follows: 1) After a seasonal freeze-thaw event, soil properties across the 0–80 cm profile changed by 0.96%–31.02% (physical), −34.29%–44.04% (chemical), and −70.46%–272.97% (biological), with change rates varying across soil layers. 2) A function-based framework was employed to assess SQI0–30 under freeze-thaw conditions, and the reliability of the function indices and SQI0–30 was validated. 3) Compared to pre-freezing levels, post-thawing water retention and regulation index changed negligibly (+5.31%), carbon sequestration index remained stable (+2.52%), and the primary productivity index declined noticeably (−9.43%). Conversely, the nutrient supply and cycling index increased notably (+23.89%) due to elevated total potassium, catalase activity, and urease activity. The biodiversity provision index improved substantially (+95.63%) owing to increased dissolved organic carbon. Collectively, the SQI0–30 increased evidently by 11.78%. 4) These alterations were associated with different freeze-thaw indicators, and the daily freeze-thaw temperature difference at 0–10 cm during the “freezing→frozen→thawing” period explained 55% of the SQI0–30 change, surpassing impacts of meteorological factors (precipitation, air temperature, and snow depth). Our study suggests that natural seasonal freeze-thaw events can raise alpine grassland soil quality, with varied functional responses. The identified soil indicators and functions sensitive to freeze-thaw cycles facilitate the research on seasonal dynamics of alpine grassland soil and its multi-objective management, and the quantitative relationships with freeze-thaw indicators provide new insights for regional soil mapping in frozen areas under climate change.
期刊介绍:
Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.