多视角表征学习与双标签协同引导

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-11-02 DOI:10.1016/j.knosys.2024.112680
Bin Chen , Xiaojin Ren , Shunshun Bai , Ziyuan Chen , Qinghai Zheng , Jihua Zhu
{"title":"多视角表征学习与双标签协同引导","authors":"Bin Chen ,&nbsp;Xiaojin Ren ,&nbsp;Shunshun Bai ,&nbsp;Ziyuan Chen ,&nbsp;Qinghai Zheng ,&nbsp;Jihua Zhu","doi":"10.1016/j.knosys.2024.112680","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-view Representation Learning (MRL) has recently attracted widespread attention because it can integrate information from diverse data sources to achieve better performance. However, existing MRL methods still have two issues: (1) They typically perform various consistency objectives within the feature space, which might discard complementary information contained in each view. (2) Some methods only focus on handling inter-view relationships while ignoring inter-sample relationships that are also valuable for downstream tasks. To address these issues, we propose a novel Multi-view representation learning method with Dual-label Collaborative Guidance (MDCG). Specifically, we fully excavate and utilize valuable semantic and graph information hidden in multi-view data to collaboratively guide the learning process of MRL. By learning consistent semantic labels from distinct views, our method enhances intrinsic connections across views while preserving view-specific information, which contributes to learning the consistent and complementary unified representation. Moreover, we integrate similarity matrices of multiple views to construct graph labels that indicate inter-sample relationships. With the idea of self-supervised contrastive learning, graph structure information implied in graph labels is effectively captured by the unified representation, thus enhancing its discriminability. Extensive experiments on diverse real-world datasets demonstrate the effectiveness and superiority of MDCG compared with nine state-of-the-art methods. Our code will be available at <span><span>https://github.com/Bin1Chen/MDCG</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"305 ","pages":"Article 112680"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-view representation learning with dual-label collaborative guidance\",\"authors\":\"Bin Chen ,&nbsp;Xiaojin Ren ,&nbsp;Shunshun Bai ,&nbsp;Ziyuan Chen ,&nbsp;Qinghai Zheng ,&nbsp;Jihua Zhu\",\"doi\":\"10.1016/j.knosys.2024.112680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-view Representation Learning (MRL) has recently attracted widespread attention because it can integrate information from diverse data sources to achieve better performance. However, existing MRL methods still have two issues: (1) They typically perform various consistency objectives within the feature space, which might discard complementary information contained in each view. (2) Some methods only focus on handling inter-view relationships while ignoring inter-sample relationships that are also valuable for downstream tasks. To address these issues, we propose a novel Multi-view representation learning method with Dual-label Collaborative Guidance (MDCG). Specifically, we fully excavate and utilize valuable semantic and graph information hidden in multi-view data to collaboratively guide the learning process of MRL. By learning consistent semantic labels from distinct views, our method enhances intrinsic connections across views while preserving view-specific information, which contributes to learning the consistent and complementary unified representation. Moreover, we integrate similarity matrices of multiple views to construct graph labels that indicate inter-sample relationships. With the idea of self-supervised contrastive learning, graph structure information implied in graph labels is effectively captured by the unified representation, thus enhancing its discriminability. Extensive experiments on diverse real-world datasets demonstrate the effectiveness and superiority of MDCG compared with nine state-of-the-art methods. Our code will be available at <span><span>https://github.com/Bin1Chen/MDCG</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"305 \",\"pages\":\"Article 112680\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124013145\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013145","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

多视图表征学习(Multi-view Representation Learning,MRL)最近引起了广泛关注,因为它可以整合来自不同数据源的信息,从而获得更好的性能。然而,现有的 MRL 方法仍然存在两个问题:(1)它们通常在特征空间内执行各种一致性目标,这可能会丢弃每个视图中包含的互补信息。(2)有些方法只关注处理视图间的关系,而忽略了对下游任务同样有价值的样本间关系。为了解决这些问题,我们提出了一种新颖的多视图表示学习方法--双标签协同引导(MDCG)。具体来说,我们充分挖掘和利用隐藏在多视图数据中的有价值的语义和图信息,以协同指导多视图表示学习过程。通过从不同视图中学习一致的语义标签,我们的方法增强了视图间的内在联系,同时保留了视图的特定信息,这有助于学习一致且互补的统一表征。此外,我们还整合了多个视图的相似性矩阵,以构建表示样本间关系的图标签。在自监督对比学习的理念下,统一表示法能有效捕捉图标签中隐含的图结构信息,从而提高其辨别能力。在各种实际数据集上进行的广泛实验证明,与九种最先进的方法相比,MDCG 是有效和优越的。我们的代码将发布在 https://github.com/Bin1Chen/MDCG 网站上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-view representation learning with dual-label collaborative guidance
Multi-view Representation Learning (MRL) has recently attracted widespread attention because it can integrate information from diverse data sources to achieve better performance. However, existing MRL methods still have two issues: (1) They typically perform various consistency objectives within the feature space, which might discard complementary information contained in each view. (2) Some methods only focus on handling inter-view relationships while ignoring inter-sample relationships that are also valuable for downstream tasks. To address these issues, we propose a novel Multi-view representation learning method with Dual-label Collaborative Guidance (MDCG). Specifically, we fully excavate and utilize valuable semantic and graph information hidden in multi-view data to collaboratively guide the learning process of MRL. By learning consistent semantic labels from distinct views, our method enhances intrinsic connections across views while preserving view-specific information, which contributes to learning the consistent and complementary unified representation. Moreover, we integrate similarity matrices of multiple views to construct graph labels that indicate inter-sample relationships. With the idea of self-supervised contrastive learning, graph structure information implied in graph labels is effectively captured by the unified representation, thus enhancing its discriminability. Extensive experiments on diverse real-world datasets demonstrate the effectiveness and superiority of MDCG compared with nine state-of-the-art methods. Our code will be available at https://github.com/Bin1Chen/MDCG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Editorial Board Local Metric NER: A new paradigm for named entity recognition from a multi-label perspective CRATI: Contrastive representation-based multimodal sound event localization and detection ALDANER: Active Learning based Data Augmentation for Named Entity Recognition Robust deadline-aware network function parallelization framework under demand uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1