需求不确定情况下稳健的截止日期感知网络功能并行化框架

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-11-03 DOI:10.1016/j.knosys.2024.112696
Bo Meng , Amin Rezaeipanah
{"title":"需求不确定情况下稳健的截止日期感知网络功能并行化框架","authors":"Bo Meng ,&nbsp;Amin Rezaeipanah","doi":"10.1016/j.knosys.2024.112696","DOIUrl":null,"url":null,"abstract":"<div><div>The orchestration of Service Function Chains (SFCs) in Mobile Edge Computing (MEC) becomes crucial for ensuring efficient service provision, especially under dynamic and uncertain demand. Meanwhile, the parallelization of Virtual Network Functions (VNFs) within an SFC can further optimize resource usage and reduce the risk of deadline violations. However, most existing works formulate the SFC orchestration problem in MEC with deterministic demands and costly runtime resource reprovisioning to handle dynamic demands. This paper introduces a Robust Deadline-aware network function Parallelization framework under Demand Uncertainty (RDPDU) designed to address the challenges posed by unpredictable fluctuations in user demand and resource availability within MEC networks. RDPDU to consider end-to-end latency for SFC assembly by modeling load-dependent processing latency and load-independent propagation latency. Also, RDPDU formulates the problem assuming uncertain demand by Quadratic Integer Programming (QIP) to be resistant to dynamic service demand fluctuations. By discovering dependencies between VNFs, the RDPDU effectively assembles multiple sub-SFCs instead of the original SFC. Finally, our framework uses Deep Reinforcement Learning (DRL) to assemble sub-SFCs with guaranteed latency and deadline. By integrating DRL into the SFC orchestration problem, the framework adapts to changing network conditions and demand patterns, improving the overall system's flexibility and robustness. Experimental evaluations show that the proposed framework can effectively deal with demand fluctuations, latency, deadline, and scalability and improve performance against recent algorithms.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust deadline-aware network function parallelization framework under demand uncertainty\",\"authors\":\"Bo Meng ,&nbsp;Amin Rezaeipanah\",\"doi\":\"10.1016/j.knosys.2024.112696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The orchestration of Service Function Chains (SFCs) in Mobile Edge Computing (MEC) becomes crucial for ensuring efficient service provision, especially under dynamic and uncertain demand. Meanwhile, the parallelization of Virtual Network Functions (VNFs) within an SFC can further optimize resource usage and reduce the risk of deadline violations. However, most existing works formulate the SFC orchestration problem in MEC with deterministic demands and costly runtime resource reprovisioning to handle dynamic demands. This paper introduces a Robust Deadline-aware network function Parallelization framework under Demand Uncertainty (RDPDU) designed to address the challenges posed by unpredictable fluctuations in user demand and resource availability within MEC networks. RDPDU to consider end-to-end latency for SFC assembly by modeling load-dependent processing latency and load-independent propagation latency. Also, RDPDU formulates the problem assuming uncertain demand by Quadratic Integer Programming (QIP) to be resistant to dynamic service demand fluctuations. By discovering dependencies between VNFs, the RDPDU effectively assembles multiple sub-SFCs instead of the original SFC. Finally, our framework uses Deep Reinforcement Learning (DRL) to assemble sub-SFCs with guaranteed latency and deadline. By integrating DRL into the SFC orchestration problem, the framework adapts to changing network conditions and demand patterns, improving the overall system's flexibility and robustness. Experimental evaluations show that the proposed framework can effectively deal with demand fluctuations, latency, deadline, and scalability and improve performance against recent algorithms.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124013303\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013303","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

移动边缘计算(MEC)中服务功能链(SFC)的协调对于确保高效的服务提供至关重要,尤其是在动态和不确定的需求下。同时,SFC 中虚拟网络功能(VNF)的并行化可以进一步优化资源使用,降低违反截止日期的风险。然而,大多数现有研究都是以确定性需求和代价高昂的运行时资源重新配置来处理动态需求,从而制定 MEC 中的 SFC 协调问题。本文介绍了需求不确定性下的稳健截止日期感知网络功能并行化框架(RDPDU),旨在应对 MEC 网络中用户需求和资源可用性不可预测波动带来的挑战。RDPDU 通过模拟与负载相关的处理延迟和与负载无关的传播延迟,来考虑 SFC 组装的端到端延迟。此外,RDPDU 还通过二次整数编程(QIP)假设不确定的需求来制定问题,以抵御动态服务需求波动。通过发现 VNF 之间的依赖关系,RDPDU 可以有效地组装多个子 SFC,而不是原始的 SFC。最后,我们的框架使用深度强化学习(DRL)来组装具有保证延迟和截止时间的子 SFC。通过将 DRL 集成到 SFC 协调问题中,该框架可适应不断变化的网络条件和需求模式,从而提高整个系统的灵活性和鲁棒性。实验评估表明,所提出的框架能有效处理需求波动、延迟、截止时间和可扩展性等问题,与最新算法相比性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust deadline-aware network function parallelization framework under demand uncertainty
The orchestration of Service Function Chains (SFCs) in Mobile Edge Computing (MEC) becomes crucial for ensuring efficient service provision, especially under dynamic and uncertain demand. Meanwhile, the parallelization of Virtual Network Functions (VNFs) within an SFC can further optimize resource usage and reduce the risk of deadline violations. However, most existing works formulate the SFC orchestration problem in MEC with deterministic demands and costly runtime resource reprovisioning to handle dynamic demands. This paper introduces a Robust Deadline-aware network function Parallelization framework under Demand Uncertainty (RDPDU) designed to address the challenges posed by unpredictable fluctuations in user demand and resource availability within MEC networks. RDPDU to consider end-to-end latency for SFC assembly by modeling load-dependent processing latency and load-independent propagation latency. Also, RDPDU formulates the problem assuming uncertain demand by Quadratic Integer Programming (QIP) to be resistant to dynamic service demand fluctuations. By discovering dependencies between VNFs, the RDPDU effectively assembles multiple sub-SFCs instead of the original SFC. Finally, our framework uses Deep Reinforcement Learning (DRL) to assemble sub-SFCs with guaranteed latency and deadline. By integrating DRL into the SFC orchestration problem, the framework adapts to changing network conditions and demand patterns, improving the overall system's flexibility and robustness. Experimental evaluations show that the proposed framework can effectively deal with demand fluctuations, latency, deadline, and scalability and improve performance against recent algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Local Metric NER: A new paradigm for named entity recognition from a multi-label perspective CRATI: Contrastive representation-based multimodal sound event localization and detection ALDANER: Active Learning based Data Augmentation for Named Entity Recognition Robust deadline-aware network function parallelization framework under demand uncertainty PMCN: Parallax-motion collaboration network for stereo video dehazing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1