繁殖的变化是气候变化和草地管理对植物种群动态的中介作用。

IF 4.3 2区 环境科学与生态学 Q1 ECOLOGY Ecological Applications Pub Date : 2024-12-08 DOI:10.1002/eap.3063
Martin Andrzejak, Tiffany M. Knight, Carolin Plos, Lotte Korell
{"title":"繁殖的变化是气候变化和草地管理对植物种群动态的中介作用。","authors":"Martin Andrzejak,&nbsp;Tiffany M. Knight,&nbsp;Carolin Plos,&nbsp;Lotte Korell","doi":"10.1002/eap.3063","DOIUrl":null,"url":null,"abstract":"<p>Climate change is one of the largest threats to grassland plant species, which can be modified by land management. Although climate change and land management are expected to separately and interactively influence plant demography, this has been rarely considered in climate change experiments. We used a large-scale experiment in central Germany to quantify the effects of grassland management, climate change, and their joint effect on the demography and population growth rate of 11 plant species all native to this temperate grassland ecosystem. We parameterized integral projection models with five years of demographic data to project population growth rate. We hypothesized that plant populations perform better in the ambient than in the future climate treatment that creates hotter and drier summer conditions. Further, we hypothesized that plant performance interactively responds to climate and land management in a species-specific manner based on the drought, mowing, and grazing tolerances as well as the flowering phenology of each species. Due to extreme drought events, over half of our study species went quasi extinct, which highlights how extreme climate events can influence long-term experimental results. We found no consistent support for our expectation that plants perform better in ambient compared with future climate conditions. However, several species showed interactive responses to the treatments, indicating that optimal management strategies for plant performance are expected to shift with climate change. Changes in population growth rates of these species across treatments were mostly due to changes in plant reproduction. Experiments combined with measuring plant demographic responses provide a way to isolate the effects of different drivers on the long-term persistence of species and to identify the demographic vital rates that are critical to manage in the future. Our study suggests that it will become increasingly difficult to maintain species with preferences for moister soil conditions, and that climate and land use can interactively alter demographic responses of the remaining grassland species.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":"35 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737008/pdf/","citationCount":"0","resultStr":"{\"title\":\"Changes in reproduction mediate the effects of climate change and grassland management on plant population dynamics\",\"authors\":\"Martin Andrzejak,&nbsp;Tiffany M. Knight,&nbsp;Carolin Plos,&nbsp;Lotte Korell\",\"doi\":\"10.1002/eap.3063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate change is one of the largest threats to grassland plant species, which can be modified by land management. Although climate change and land management are expected to separately and interactively influence plant demography, this has been rarely considered in climate change experiments. We used a large-scale experiment in central Germany to quantify the effects of grassland management, climate change, and their joint effect on the demography and population growth rate of 11 plant species all native to this temperate grassland ecosystem. We parameterized integral projection models with five years of demographic data to project population growth rate. We hypothesized that plant populations perform better in the ambient than in the future climate treatment that creates hotter and drier summer conditions. Further, we hypothesized that plant performance interactively responds to climate and land management in a species-specific manner based on the drought, mowing, and grazing tolerances as well as the flowering phenology of each species. Due to extreme drought events, over half of our study species went quasi extinct, which highlights how extreme climate events can influence long-term experimental results. We found no consistent support for our expectation that plants perform better in ambient compared with future climate conditions. However, several species showed interactive responses to the treatments, indicating that optimal management strategies for plant performance are expected to shift with climate change. Changes in population growth rates of these species across treatments were mostly due to changes in plant reproduction. Experiments combined with measuring plant demographic responses provide a way to isolate the effects of different drivers on the long-term persistence of species and to identify the demographic vital rates that are critical to manage in the future. Our study suggests that it will become increasingly difficult to maintain species with preferences for moister soil conditions, and that climate and land use can interactively alter demographic responses of the remaining grassland species.</p>\",\"PeriodicalId\":55168,\"journal\":{\"name\":\"Ecological Applications\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737008/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Applications\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eap.3063\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Applications","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eap.3063","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

气候变化是草原植物物种面临的最大威胁之一,可以通过土地管理来改善。虽然预计气候变化和土地管理将分别和相互作用地影响植物种群,但在气候变化实验中很少考虑到这一点。在德国中部进行了大规模实验,量化了草地管理、气候变化及其共同作用对11种原产于温带草原生态系统的植物种群数量和种群增长率的影响。我们用5年的人口数据参数化积分预测模型来预测人口增长率。我们假设植物种群在环境中比在未来的气候处理中表现得更好,这将创造更炎热和更干燥的夏季条件。此外,我们假设植物的表现以一种特定的方式对气候和土地管理做出交互反应,这种方式基于每个物种的干旱、刈割和放牧耐受性以及开花物候。由于极端干旱事件,我们研究的物种中有一半以上濒临灭绝,这凸显了极端气候事件如何影响长期实验结果。我们发现,与未来的气候条件相比,植物在当前环境中的表现更好,这一预期并没有得到一致的支持。然而,一些物种对这些处理表现出交互反应,表明植物性能的最佳管理策略有望随着气候变化而发生变化。不同处理间种群增长率的变化主要是由于植物繁殖的变化。实验与测量植物种群反应相结合,提供了一种方法来分离不同驱动因素对物种长期持久性的影响,并确定对未来管理至关重要的人口动态率。我们的研究表明,维持对湿润土壤条件有偏好的物种将变得越来越困难,气候和土地利用可以相互作用地改变剩余草原物种的人口统计学响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Changes in reproduction mediate the effects of climate change and grassland management on plant population dynamics

Climate change is one of the largest threats to grassland plant species, which can be modified by land management. Although climate change and land management are expected to separately and interactively influence plant demography, this has been rarely considered in climate change experiments. We used a large-scale experiment in central Germany to quantify the effects of grassland management, climate change, and their joint effect on the demography and population growth rate of 11 plant species all native to this temperate grassland ecosystem. We parameterized integral projection models with five years of demographic data to project population growth rate. We hypothesized that plant populations perform better in the ambient than in the future climate treatment that creates hotter and drier summer conditions. Further, we hypothesized that plant performance interactively responds to climate and land management in a species-specific manner based on the drought, mowing, and grazing tolerances as well as the flowering phenology of each species. Due to extreme drought events, over half of our study species went quasi extinct, which highlights how extreme climate events can influence long-term experimental results. We found no consistent support for our expectation that plants perform better in ambient compared with future climate conditions. However, several species showed interactive responses to the treatments, indicating that optimal management strategies for plant performance are expected to shift with climate change. Changes in population growth rates of these species across treatments were mostly due to changes in plant reproduction. Experiments combined with measuring plant demographic responses provide a way to isolate the effects of different drivers on the long-term persistence of species and to identify the demographic vital rates that are critical to manage in the future. Our study suggests that it will become increasingly difficult to maintain species with preferences for moister soil conditions, and that climate and land use can interactively alter demographic responses of the remaining grassland species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Ecological Applications
Ecological Applications 环境科学-环境科学
CiteScore
9.50
自引率
2.00%
发文量
268
审稿时长
6 months
期刊介绍: The pages of Ecological Applications are open to research and discussion papers that integrate ecological science and concepts with their application and implications. Of special interest are papers that develop the basic scientific principles on which environmental decision-making should rest, and those that discuss the application of ecological concepts to environmental problem solving, policy, and management. Papers that deal explicitly with policy matters are welcome. Interdisciplinary approaches are encouraged, as are short communications on emerging environmental challenges.
期刊最新文献
Using dynamic foodscape models to assess bottom-up constraints on population performance of herbivores Deciduous forests hold conservation value for birds within South Andaman Island, India Methane and nitrous oxide fluxes from reference, restored, and disturbed estuarine wetlands in Pacific Northwest, USA Novel associations among insect herbivores and trees: Patterns of occurrence and damage on pines and eucalypts Fall and rise of a threatened raptor: Unraveling long-term population dynamics with spatially explicit integrated models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1