利用应变效应探索Mn3Si2Te6的电子、磁性、光学和热电性质:DFT研究

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Materials Pub Date : 2024-10-28 DOI:10.1007/s11664-024-11532-9
Y. Saeed, Huda A. Alburaih, M. Musa Saad Hasb Elkhalig, M. Usman Saeed, Sardar Mohsin Ali, Zeeshan Ali, Fahad Ali Khan, Uzair Khan, Ahmad Razzaq, Aziz-Ur-Rahim Bacha
{"title":"利用应变效应探索Mn3Si2Te6的电子、磁性、光学和热电性质:DFT研究","authors":"Y. Saeed,&nbsp;Huda A. Alburaih,&nbsp;M. Musa Saad Hasb Elkhalig,&nbsp;M. Usman Saeed,&nbsp;Sardar Mohsin Ali,&nbsp;Zeeshan Ali,&nbsp;Fahad Ali Khan,&nbsp;Uzair Khan,&nbsp;Ahmad Razzaq,&nbsp;Aziz-Ur-Rahim Bacha","doi":"10.1007/s11664-024-11532-9","DOIUrl":null,"url":null,"abstract":"<div><p>We performed first-principles calculations to investigate the structural, electronic, magnetic, optical, and thermoelectric properties of Mn<sub>3</sub>Si<sub>2</sub>Te<sub>6</sub> (MST) at various temperatures using the BoltzTraP package. From the experimental analysis, the material exhibited a metallic nature due to zero bandgap. After performing density functional theory calculations by applying strain engineering on the MST compound, we discovered that the material was a half-metal. The thermoelectric characteristics of the MST compound under strain engineering were investigated using WIEN2k code. The results demonstrated that at 5% tensile strain engineering, the material was half-metal, with an indirect bandgap of 0.732 eV at the <i>Γ</i>–K symmetry point of the Brillouin zone with the generalized gradient approximation (GGA). It was discovered that compressive strain reduced the bandgap whereas tensile strain increased the bandgap value of the bulk MST. With the use of the hybrid functional (GGA + modified Becke–Johnson [mBJ] potential) at 4% tensile strain, the highest bandgap of 1.24 eV at <i>Γ</i>–K was obtained. The optical characteristics at 4% tensile strain were calculated with the hybrid functional. Finally, the thermoelectric properties of MST were determined, including the Seebeck coefficient, electrical conductivity, thermal conductivity, power factor, and figure of merit at 4% tensile strain from 300 K to 800 K. It was found that the Seebeck coefficient and electrical conductivity of MST are temperature-sensitive and decrease as the temperature rises. The Seebeck coefficient was measured at a temperature of 300 K for 4% strain, obtaining values of 300 µV/<i>K</i> (<i>p</i>-type) and 310 µV/<i>K</i> (<i>n</i>-type) region. The lattice thermal conductivity (LTC) was calculated with increasing temperature for MST from 8 W/mK at 100 K to 2 W/mK at 600 K, for 0–10 GPa. The calculated dimensionless figure of merit, <i>ZT</i>, at 300 K reached 0.72 for both <i>p</i>- and <i>n</i>-type, which decreased to 0.56 with experimental thermal conductivity. These results indicate that MST could be suitable material for use in future thermoelectric devices.</p></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"54 1","pages":"403 - 412"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Electronic, Magnetic, Optical, and Thermoelectric Properties of Mn3Si2Te6 by Using the Strain Effect: A DFT Study\",\"authors\":\"Y. Saeed,&nbsp;Huda A. Alburaih,&nbsp;M. Musa Saad Hasb Elkhalig,&nbsp;M. Usman Saeed,&nbsp;Sardar Mohsin Ali,&nbsp;Zeeshan Ali,&nbsp;Fahad Ali Khan,&nbsp;Uzair Khan,&nbsp;Ahmad Razzaq,&nbsp;Aziz-Ur-Rahim Bacha\",\"doi\":\"10.1007/s11664-024-11532-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We performed first-principles calculations to investigate the structural, electronic, magnetic, optical, and thermoelectric properties of Mn<sub>3</sub>Si<sub>2</sub>Te<sub>6</sub> (MST) at various temperatures using the BoltzTraP package. From the experimental analysis, the material exhibited a metallic nature due to zero bandgap. After performing density functional theory calculations by applying strain engineering on the MST compound, we discovered that the material was a half-metal. The thermoelectric characteristics of the MST compound under strain engineering were investigated using WIEN2k code. The results demonstrated that at 5% tensile strain engineering, the material was half-metal, with an indirect bandgap of 0.732 eV at the <i>Γ</i>–K symmetry point of the Brillouin zone with the generalized gradient approximation (GGA). It was discovered that compressive strain reduced the bandgap whereas tensile strain increased the bandgap value of the bulk MST. With the use of the hybrid functional (GGA + modified Becke–Johnson [mBJ] potential) at 4% tensile strain, the highest bandgap of 1.24 eV at <i>Γ</i>–K was obtained. The optical characteristics at 4% tensile strain were calculated with the hybrid functional. Finally, the thermoelectric properties of MST were determined, including the Seebeck coefficient, electrical conductivity, thermal conductivity, power factor, and figure of merit at 4% tensile strain from 300 K to 800 K. It was found that the Seebeck coefficient and electrical conductivity of MST are temperature-sensitive and decrease as the temperature rises. The Seebeck coefficient was measured at a temperature of 300 K for 4% strain, obtaining values of 300 µV/<i>K</i> (<i>p</i>-type) and 310 µV/<i>K</i> (<i>n</i>-type) region. The lattice thermal conductivity (LTC) was calculated with increasing temperature for MST from 8 W/mK at 100 K to 2 W/mK at 600 K, for 0–10 GPa. The calculated dimensionless figure of merit, <i>ZT</i>, at 300 K reached 0.72 for both <i>p</i>- and <i>n</i>-type, which decreased to 0.56 with experimental thermal conductivity. These results indicate that MST could be suitable material for use in future thermoelectric devices.</p></div>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":\"54 1\",\"pages\":\"403 - 412\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11664-024-11532-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11532-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们使用BoltzTraP封装进行第一性原理计算来研究Mn3Si2Te6 (MST)在不同温度下的结构、电子、磁性、光学和热电性质。从实验分析来看,由于带隙为零,材料表现出金属性质。通过应变工程对MST化合物进行密度泛函理论计算,发现该材料为半金属。采用WIEN2k程序研究了MST复合材料在应变工程下的热电特性。结果表明,在5%拉伸应变工程下,材料为半金属,在布里渊区Γ-K对称点处,根据广义梯度近似(GGA),间接带隙为0.732 eV。结果表明,压缩应变使块体MST的带隙减小,而拉伸应变使带隙增大。在4%拉伸应变下,使用杂化泛函(GGA +改性Becke-Johnson [mBJ]电位),在Γ-K处获得了1.24 eV的最大带隙。利用杂化泛函计算了4%拉伸应变下的光学特性。最后,测定了MST的热电性能,包括塞贝克系数、电导率、导热系数、功率因数和300 ~ 800 K范围内4%拉伸应变下的优值图。发现MST的塞贝克系数和电导率对温度敏感,随温度升高而降低。在300 K温度下,测量4%应变下的塞贝克系数,得到300µV/K (p型)和310µV/K (n型)区域。在0-10 GPa条件下,随着温度的升高,MST的晶格导热系数(LTC)从100 K时的8 W/mK增加到600 K时的2 W/mK。在300 K时,p型和n型的无因次优值ZT均达到0.72,而实验导热系数则降至0.56。这些结果表明,MST可以作为一种合适的材料用于未来的热电器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the Electronic, Magnetic, Optical, and Thermoelectric Properties of Mn3Si2Te6 by Using the Strain Effect: A DFT Study

We performed first-principles calculations to investigate the structural, electronic, magnetic, optical, and thermoelectric properties of Mn3Si2Te6 (MST) at various temperatures using the BoltzTraP package. From the experimental analysis, the material exhibited a metallic nature due to zero bandgap. After performing density functional theory calculations by applying strain engineering on the MST compound, we discovered that the material was a half-metal. The thermoelectric characteristics of the MST compound under strain engineering were investigated using WIEN2k code. The results demonstrated that at 5% tensile strain engineering, the material was half-metal, with an indirect bandgap of 0.732 eV at the Γ–K symmetry point of the Brillouin zone with the generalized gradient approximation (GGA). It was discovered that compressive strain reduced the bandgap whereas tensile strain increased the bandgap value of the bulk MST. With the use of the hybrid functional (GGA + modified Becke–Johnson [mBJ] potential) at 4% tensile strain, the highest bandgap of 1.24 eV at Γ–K was obtained. The optical characteristics at 4% tensile strain were calculated with the hybrid functional. Finally, the thermoelectric properties of MST were determined, including the Seebeck coefficient, electrical conductivity, thermal conductivity, power factor, and figure of merit at 4% tensile strain from 300 K to 800 K. It was found that the Seebeck coefficient and electrical conductivity of MST are temperature-sensitive and decrease as the temperature rises. The Seebeck coefficient was measured at a temperature of 300 K for 4% strain, obtaining values of 300 µV/K (p-type) and 310 µV/K (n-type) region. The lattice thermal conductivity (LTC) was calculated with increasing temperature for MST from 8 W/mK at 100 K to 2 W/mK at 600 K, for 0–10 GPa. The calculated dimensionless figure of merit, ZT, at 300 K reached 0.72 for both p- and n-type, which decreased to 0.56 with experimental thermal conductivity. These results indicate that MST could be suitable material for use in future thermoelectric devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Journal of Electronic Materials
Journal of Electronic Materials 工程技术-材料科学:综合
CiteScore
4.10
自引率
4.80%
发文量
693
审稿时长
3.8 months
期刊介绍: The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications. Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field. A journal of The Minerals, Metals & Materials Society.
期刊最新文献
Improving the Seebeck Coefficient and Electrical Conductivity of Fe11Ti3Al6 by Substituting Fe with Cr. Time-Lapse Imaging of Bismuth Precipitation and Coarsening on the Surface of Sn-Ag-Cu-Bi Solder Joints After Thermal Cycling. In Situ Growth of Nanorod-Assembled SnWO4 via AACVD for ppb Level Xylene Gas Sensor Polymeric Biosensor Development for Electrochemical Analysis of Tartrazine and Methyl Orange Study on the Vibration Mechanism of the Core Components of an HVDC Filter Capacitor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1