提高钢铁生产资源效率的途径

IF 4.9 2区 工程技术 Q1 ENGINEERING, CHEMICAL Minerals Engineering Pub Date : 2024-12-20 DOI:10.1016/j.mineng.2024.109160
T.C. Alex, Rashmi Singla, D.P. Sahoo, K.D. Mehta, Sanjay Kumar
{"title":"提高钢铁生产资源效率的途径","authors":"T.C. Alex,&nbsp;Rashmi Singla,&nbsp;D.P. Sahoo,&nbsp;K.D. Mehta,&nbsp;Sanjay Kumar","doi":"10.1016/j.mineng.2024.109160","DOIUrl":null,"url":null,"abstract":"<div><div>Ironmaking- steelmaking is a material and energy intensive process with a resource efficiency of only ∼ 33 %. Resource efficiency enhancement requires recovering the wasted/unutilized material by-products and the energy associated with them in various forms. This review attempts to identify the material leakages and energy losses at each step of steelmaking (from iron ore mining) and explores approaches to plug the energy and material leakage; material efficiency brings in energy savings indirectly. Besides the material loss, accumulation of the by-products (slime/tailings, steel slag, etc.), carbon emission, etc., cause environmental and ecological damage. The review discusses the prospects of slimes/tailings beneficiation through physical and physicochemical methods (often after some pretreatments). The manuscript also discusses the need to recover heat from molten slags (BF slag and BOF slag) to reduce the energy intensity. Further, it discusses the endeavors to overcome the latent hydraulic activity of granulated BF slag and ways to enhance the acceptability of BOF slag in different applications. A brief sum-up of global efforts towards net zero emission (in line with the Paris Declaration) through carbon recycling, low emission intensity processes, alternate fuels, etc., is included. Lastly, the authors list the challenges of the Indian iron &amp; steel industry and the efforts from the government and steel industries towards achieving the projected crude steel production (300 million tons) without crossing the emission intensity thresholds (Paris Declaration). The endeavors strengthen the sustainability of the steel industry.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"222 ","pages":"Article 109160"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Avenues of resources efficiency enhancement in iron and steel production\",\"authors\":\"T.C. Alex,&nbsp;Rashmi Singla,&nbsp;D.P. Sahoo,&nbsp;K.D. Mehta,&nbsp;Sanjay Kumar\",\"doi\":\"10.1016/j.mineng.2024.109160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ironmaking- steelmaking is a material and energy intensive process with a resource efficiency of only ∼ 33 %. Resource efficiency enhancement requires recovering the wasted/unutilized material by-products and the energy associated with them in various forms. This review attempts to identify the material leakages and energy losses at each step of steelmaking (from iron ore mining) and explores approaches to plug the energy and material leakage; material efficiency brings in energy savings indirectly. Besides the material loss, accumulation of the by-products (slime/tailings, steel slag, etc.), carbon emission, etc., cause environmental and ecological damage. The review discusses the prospects of slimes/tailings beneficiation through physical and physicochemical methods (often after some pretreatments). The manuscript also discusses the need to recover heat from molten slags (BF slag and BOF slag) to reduce the energy intensity. Further, it discusses the endeavors to overcome the latent hydraulic activity of granulated BF slag and ways to enhance the acceptability of BOF slag in different applications. A brief sum-up of global efforts towards net zero emission (in line with the Paris Declaration) through carbon recycling, low emission intensity processes, alternate fuels, etc., is included. Lastly, the authors list the challenges of the Indian iron &amp; steel industry and the efforts from the government and steel industries towards achieving the projected crude steel production (300 million tons) without crossing the emission intensity thresholds (Paris Declaration). The endeavors strengthen the sustainability of the steel industry.</div></div>\",\"PeriodicalId\":18594,\"journal\":{\"name\":\"Minerals Engineering\",\"volume\":\"222 \",\"pages\":\"Article 109160\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0892687524005892\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687524005892","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

炼铁炼钢是一个材料和能源密集型的过程,资源效率只有33%。提高资源效率需要以各种形式回收废弃/未利用的材料副产品及其相关的能源。本文试图找出炼钢(从铁矿石开采)每一步的物质泄漏和能量损失,并探讨了堵塞能量和物质泄漏的方法;材料效率间接带来能源节约。除了物质损失外,副产品(矿泥/尾矿、钢渣等)的积累、碳的排放等还会对环境和生态造成破坏。综述了采用物理和物理化学方法(通常经过一定的预处理)选矿矿泥/尾矿的前景。本文还讨论了从熔渣(高炉渣和转炉渣)中回收热量以降低能量强度的必要性。此外,还讨论了克服颗粒化高炉渣潜在水力活性的努力,以及提高高炉渣在不同应用中的可接受性的方法。简要总结了通过碳回收、低排放强度工艺、替代燃料等实现净零排放(符合《巴黎宣言》)的全球努力。最后,作者列举了印度钢铁业面临的挑战。钢铁行业以及政府和钢铁行业为实现预计粗钢产量(3亿吨)而不超过排放强度阈值(巴黎宣言)所做的努力。这些努力加强了钢铁工业的可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Avenues of resources efficiency enhancement in iron and steel production
Ironmaking- steelmaking is a material and energy intensive process with a resource efficiency of only ∼ 33 %. Resource efficiency enhancement requires recovering the wasted/unutilized material by-products and the energy associated with them in various forms. This review attempts to identify the material leakages and energy losses at each step of steelmaking (from iron ore mining) and explores approaches to plug the energy and material leakage; material efficiency brings in energy savings indirectly. Besides the material loss, accumulation of the by-products (slime/tailings, steel slag, etc.), carbon emission, etc., cause environmental and ecological damage. The review discusses the prospects of slimes/tailings beneficiation through physical and physicochemical methods (often after some pretreatments). The manuscript also discusses the need to recover heat from molten slags (BF slag and BOF slag) to reduce the energy intensity. Further, it discusses the endeavors to overcome the latent hydraulic activity of granulated BF slag and ways to enhance the acceptability of BOF slag in different applications. A brief sum-up of global efforts towards net zero emission (in line with the Paris Declaration) through carbon recycling, low emission intensity processes, alternate fuels, etc., is included. Lastly, the authors list the challenges of the Indian iron & steel industry and the efforts from the government and steel industries towards achieving the projected crude steel production (300 million tons) without crossing the emission intensity thresholds (Paris Declaration). The endeavors strengthen the sustainability of the steel industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Minerals Engineering
Minerals Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
18.80%
发文量
519
审稿时长
81 days
期刊介绍: The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.
期刊最新文献
Editorial Board The effect of hydrogen pre-reduction on the carbon-reducibility of pelletised UG2 chromite Mechanism of quartz flotation separation from gypsum using tetradecyl trimethyl ammonium chloride: Guiding the improvement of phosphogypsum quality Mitigating contaminated mine drainage through mine waste rock decontamination: A strategy for promoting cleaner and sustainable management Fourth generation gravity separation using the Reflux Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1