一种优化斑岩-铜成矿有利区预测的新框架:蚁群和网格搜索优化算法与支持向量机的结合

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Natural Resources Research Pub Date : 2025-01-11 DOI:10.1007/s11053-024-10431-4
Sarina Akbari, Hamidreza Ramazi, Reza Ghezelbash
{"title":"一种优化斑岩-铜成矿有利区预测的新框架:蚁群和网格搜索优化算法与支持向量机的结合","authors":"Sarina Akbari, Hamidreza Ramazi, Reza Ghezelbash","doi":"10.1007/s11053-024-10431-4","DOIUrl":null,"url":null,"abstract":"<p>In the realm of mineral prospectivity mapping, a novel hybrid approach for optimizing hyperparameters of the support vector machine (SVM) algorithm is proposed here. The concept of ant colony optimization (ACO) algorithm, inspired by collective intelligence of ant colonies, and grid search (GS) that systematically evaluate all hyperparameter combinations to find the optimal model configuration are leveraged to fine-tune SVM parameters, enhancing its predictive capabilities. A dataset comprising geophysical, geochemical, geological, tectonic, and remote sensing evidence layers from the Sardouyeh region in Kerman province, Iran, is utilized for model development aimed the prediction of areas favorable for porphyry-Cu mineralization. After generating the regular and tuned predictive models, a comparison was carried out using quantitative performance metrics such as confusion matrix and success rate curves. The results demonstrated that the optimized versions of SVM using ACO (ACO–SVM) and GS (GS–SVM) models exhibit superior performance, achieving better accuracy and predictive capability in identifying locations favorable for porphyry-Cu mineralization. The study highlights the potential of incorporating optimization algorithms, especially ACO, into SVM, leading to the development of more effective predictive models for mineral prospectivity mapping.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"9 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Framework for Optimizing the Prediction of Areas Favorable to Porphyry-Cu Mineralization: Combination of Ant Colony and Grid Search Optimization Algorithms with Support Vector Machines\",\"authors\":\"Sarina Akbari, Hamidreza Ramazi, Reza Ghezelbash\",\"doi\":\"10.1007/s11053-024-10431-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the realm of mineral prospectivity mapping, a novel hybrid approach for optimizing hyperparameters of the support vector machine (SVM) algorithm is proposed here. The concept of ant colony optimization (ACO) algorithm, inspired by collective intelligence of ant colonies, and grid search (GS) that systematically evaluate all hyperparameter combinations to find the optimal model configuration are leveraged to fine-tune SVM parameters, enhancing its predictive capabilities. A dataset comprising geophysical, geochemical, geological, tectonic, and remote sensing evidence layers from the Sardouyeh region in Kerman province, Iran, is utilized for model development aimed the prediction of areas favorable for porphyry-Cu mineralization. After generating the regular and tuned predictive models, a comparison was carried out using quantitative performance metrics such as confusion matrix and success rate curves. The results demonstrated that the optimized versions of SVM using ACO (ACO–SVM) and GS (GS–SVM) models exhibit superior performance, achieving better accuracy and predictive capability in identifying locations favorable for porphyry-Cu mineralization. The study highlights the potential of incorporating optimization algorithms, especially ACO, into SVM, leading to the development of more effective predictive models for mineral prospectivity mapping.</p>\",\"PeriodicalId\":54284,\"journal\":{\"name\":\"Natural Resources Research\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11053-024-10431-4\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10431-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在矿产找矿领域,提出了一种新的混合方法来优化支持向量机算法的超参数。基于蚁群集体智慧的蚁群优化算法(ant colony optimization, ACO)和网格搜索(grid search, GS),利用系统地评估所有超参数组合以找到最优模型配置,对支持向量机参数进行微调,增强其预测能力。利用来自伊朗克尔曼省Sardouyeh地区的地球物理、地球化学、地质、构造和遥感证据层数据集进行模型开发,旨在预测有利于斑岩-铜成矿的区域。在生成规则和调整后的预测模型后,使用混淆矩阵和成功率曲线等定量性能指标进行比较。结果表明,基于蚁群(ACO - SVM)和高斯(GS - SVM)模型的支持向量机优化版本在斑岩-铜成矿有利位置识别上具有较好的准确性和预测能力。该研究强调了将优化算法(尤其是蚁群算法)纳入支持向量机的潜力,从而开发出更有效的预测模型,用于矿产远景制图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Framework for Optimizing the Prediction of Areas Favorable to Porphyry-Cu Mineralization: Combination of Ant Colony and Grid Search Optimization Algorithms with Support Vector Machines

In the realm of mineral prospectivity mapping, a novel hybrid approach for optimizing hyperparameters of the support vector machine (SVM) algorithm is proposed here. The concept of ant colony optimization (ACO) algorithm, inspired by collective intelligence of ant colonies, and grid search (GS) that systematically evaluate all hyperparameter combinations to find the optimal model configuration are leveraged to fine-tune SVM parameters, enhancing its predictive capabilities. A dataset comprising geophysical, geochemical, geological, tectonic, and remote sensing evidence layers from the Sardouyeh region in Kerman province, Iran, is utilized for model development aimed the prediction of areas favorable for porphyry-Cu mineralization. After generating the regular and tuned predictive models, a comparison was carried out using quantitative performance metrics such as confusion matrix and success rate curves. The results demonstrated that the optimized versions of SVM using ACO (ACO–SVM) and GS (GS–SVM) models exhibit superior performance, achieving better accuracy and predictive capability in identifying locations favorable for porphyry-Cu mineralization. The study highlights the potential of incorporating optimization algorithms, especially ACO, into SVM, leading to the development of more effective predictive models for mineral prospectivity mapping.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
期刊最新文献
Mineral Prospectivity Modeling of Graphite Deposits and Occurrences in Canada Surface Movement Law Caused by Continuous Mining: A Case Study of Loess Plateau Coal Mines Fuzzy Classification of Mineral Resources: Moving Toward Overlapping Categories to Account for Geological, Economic, Metallurgical, Environmental, and Operational Criteria Sediment Instability Caused by Gas Production from Hydrate-Bearing Sediment in Northern South China Sea by Horizontal Wellbore: Sensitivity Analysis Heterogeneity of Pore Structure in Braided River Delta Tight Sandstone Reservoirs: Implications for Tight Oil Enrichment in the Jurassic Badaowan Formation, Central Junggar Basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1