结合半监督对比学习和变压器与测井数据的可解释SHAP模型增强岩性分类

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Natural Resources Research Pub Date : 2025-01-17 DOI:10.1007/s11053-024-10452-z
Youzhuang Sun, Shanchen Pang, Hengxiao Li, Sibo Qiao, Yongan Zhang
{"title":"结合半监督对比学习和变压器与测井数据的可解释SHAP模型增强岩性分类","authors":"Youzhuang Sun, Shanchen Pang, Hengxiao Li, Sibo Qiao, Yongan Zhang","doi":"10.1007/s11053-024-10452-z","DOIUrl":null,"url":null,"abstract":"<p>In petroleum and natural gas exploration, lithology identification—analyzing rock types beneath the Earth’s surface—is crucial for assessing hydrocarbon reservoirs and optimizing drilling strategies. Traditionally, this process relies on logging data such as gamma rays and resistivity, which often require manual interpretation, making it labor-intensive and prone to errors. To address these challenges, we propose a novel machine learning framework—contrastive learning-transformer—leveraging self-attention mechanisms to enhance the accuracy of lithology identification. Our method first extracts unlabeled samples from logging data while obtaining labeled core sample data. Through self-supervised contrastive learning and a transformer backbone network, we optimize performance using techniques like batch normalization. After pretraining, the model is fine-tuned with a limited number of labeled samples to improve accuracy and significantly reduce reliance on large labeled datasets, thereby lowering the costs associated with drilling core annotations. Additionally, our research incorporates shapley additive explanations (SHAP) technology to enhance the transparency of the model’s decision-making process, facilitating the analysis of the contribution of each feature to lithology predictions. The model also learns time-reversal invariance by reversing sequential data, ensuring reliable identification even with variations in data sequences. Experimental results demonstrate that our transformer model, combined with semi-supervised contrastive learning, significantly outperforms traditional methods, achieving more precise lithology identification, especially in complex geological environments.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"60 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Lithology Classification Using an Interpretable SHAP Model Integrating Semi-Supervised Contrastive Learning and Transformer with Well Logging Data\",\"authors\":\"Youzhuang Sun, Shanchen Pang, Hengxiao Li, Sibo Qiao, Yongan Zhang\",\"doi\":\"10.1007/s11053-024-10452-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In petroleum and natural gas exploration, lithology identification—analyzing rock types beneath the Earth’s surface—is crucial for assessing hydrocarbon reservoirs and optimizing drilling strategies. Traditionally, this process relies on logging data such as gamma rays and resistivity, which often require manual interpretation, making it labor-intensive and prone to errors. To address these challenges, we propose a novel machine learning framework—contrastive learning-transformer—leveraging self-attention mechanisms to enhance the accuracy of lithology identification. Our method first extracts unlabeled samples from logging data while obtaining labeled core sample data. Through self-supervised contrastive learning and a transformer backbone network, we optimize performance using techniques like batch normalization. After pretraining, the model is fine-tuned with a limited number of labeled samples to improve accuracy and significantly reduce reliance on large labeled datasets, thereby lowering the costs associated with drilling core annotations. Additionally, our research incorporates shapley additive explanations (SHAP) technology to enhance the transparency of the model’s decision-making process, facilitating the analysis of the contribution of each feature to lithology predictions. The model also learns time-reversal invariance by reversing sequential data, ensuring reliable identification even with variations in data sequences. Experimental results demonstrate that our transformer model, combined with semi-supervised contrastive learning, significantly outperforms traditional methods, achieving more precise lithology identification, especially in complex geological environments.</p>\",\"PeriodicalId\":54284,\"journal\":{\"name\":\"Natural Resources Research\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11053-024-10452-z\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10452-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在石油和天然气勘探中,岩性识别--分析地表下的岩石类型--对于评估油气储层和优化钻探策略至关重要。传统上,这一过程依赖于伽马射线和电阻率等测井数据,而这些数据通常需要人工解释,因此劳动密集型且容易出错。为了应对这些挑战,我们提出了一种新颖的机器学习框架--对比学习--转换器--利用自我注意机制来提高岩性识别的准确性。我们的方法首先从测井数据中提取未标记的样本,同时获取已标记的岩心样本数据。通过自监督对比学习和变压器骨干网络,我们利用批量归一化等技术优化了性能。经过预训练后,利用数量有限的标注样本对模型进行微调,以提高准确性,并显著减少对大型标注数据集的依赖,从而降低钻探岩心注释的相关成本。此外,我们的研究还采用了夏普利加法解释(SHAP)技术,以提高模型决策过程的透明度,便于分析每个特征对岩性预测的贡献。该模型还通过反转顺序数据来学习时间反转不变性,从而确保即使在数据顺序发生变化的情况下也能进行可靠的识别。实验结果表明,我们的变压器模型与半监督对比学习相结合,明显优于传统方法,实现了更精确的岩性识别,尤其是在复杂的地质环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Lithology Classification Using an Interpretable SHAP Model Integrating Semi-Supervised Contrastive Learning and Transformer with Well Logging Data

In petroleum and natural gas exploration, lithology identification—analyzing rock types beneath the Earth’s surface—is crucial for assessing hydrocarbon reservoirs and optimizing drilling strategies. Traditionally, this process relies on logging data such as gamma rays and resistivity, which often require manual interpretation, making it labor-intensive and prone to errors. To address these challenges, we propose a novel machine learning framework—contrastive learning-transformer—leveraging self-attention mechanisms to enhance the accuracy of lithology identification. Our method first extracts unlabeled samples from logging data while obtaining labeled core sample data. Through self-supervised contrastive learning and a transformer backbone network, we optimize performance using techniques like batch normalization. After pretraining, the model is fine-tuned with a limited number of labeled samples to improve accuracy and significantly reduce reliance on large labeled datasets, thereby lowering the costs associated with drilling core annotations. Additionally, our research incorporates shapley additive explanations (SHAP) technology to enhance the transparency of the model’s decision-making process, facilitating the analysis of the contribution of each feature to lithology predictions. The model also learns time-reversal invariance by reversing sequential data, ensuring reliable identification even with variations in data sequences. Experimental results demonstrate that our transformer model, combined with semi-supervised contrastive learning, significantly outperforms traditional methods, achieving more precise lithology identification, especially in complex geological environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
期刊最新文献
Mineral Prospectivity Modeling of Graphite Deposits and Occurrences in Canada Surface Movement Law Caused by Continuous Mining: A Case Study of Loess Plateau Coal Mines Fuzzy Classification of Mineral Resources: Moving Toward Overlapping Categories to Account for Geological, Economic, Metallurgical, Environmental, and Operational Criteria Sediment Instability Caused by Gas Production from Hydrate-Bearing Sediment in Northern South China Sea by Horizontal Wellbore: Sensitivity Analysis Heterogeneity of Pore Structure in Braided River Delta Tight Sandstone Reservoirs: Implications for Tight Oil Enrichment in the Jurassic Badaowan Formation, Central Junggar Basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1