旋转不变量点云分析超图上局部与全局一致相关研究

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-12-24 DOI:10.1109/TMM.2024.3521678
Yue Dai;Shihui Ying;Yue Gao
{"title":"旋转不变量点云分析超图上局部与全局一致相关研究","authors":"Yue Dai;Shihui Ying;Yue Gao","doi":"10.1109/TMM.2024.3521678","DOIUrl":null,"url":null,"abstract":"Rotation invariant point cloud analysis is essential for many real-world applications where objects can appear in arbitrary orientations. Traditional local rotation-invariant methods rely on lossy region descriptors, limiting the global comprehension of 3D objects. Conversely, global features derived from pose alignment can capture complementary information. To leverage both local and global consistency for enhanced accuracy, we propose the Global-Local-Consistent Hypergraph Cross-Attention Network (GLC-HCAN). This framework includes the Global Consistent Feature (GCF) representation branch, the Local Consistent Feature (LCF) representation branch, and the Hypergraph Cross-Attention (HyperCA) network to model complex correlations through the global-local-consistent hypergraph representation learning. Specifically, the GCF branch employs a multi-pose grouping and aggregation strategy based on PCA for improved global comprehension. Simultaneously, the LCF branch uses local farthest reference point features to enhance local region descriptions. To capture high-order and complex global-local correlations, we construct hypergraphs that integrate both features, mutually enhancing and fusing the representations. The inductive HyperCA module leverages attention techniques to better utilize these high-order relations for comprehensive understanding. Consequently, GLC-HCAN offers an effective and robust rotation-invariant point cloud analysis network, suitable for object classification and shape retrieval tasks in SO(3). Experimental results on both synthetic and scanned point cloud datasets demonstrate that GLC-HCAN outperforms state-of-the-art methods.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"186-197"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Local and Global Consistent Correlation on Hypergraph for Rotation Invariant Point Cloud Analysis\",\"authors\":\"Yue Dai;Shihui Ying;Yue Gao\",\"doi\":\"10.1109/TMM.2024.3521678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rotation invariant point cloud analysis is essential for many real-world applications where objects can appear in arbitrary orientations. Traditional local rotation-invariant methods rely on lossy region descriptors, limiting the global comprehension of 3D objects. Conversely, global features derived from pose alignment can capture complementary information. To leverage both local and global consistency for enhanced accuracy, we propose the Global-Local-Consistent Hypergraph Cross-Attention Network (GLC-HCAN). This framework includes the Global Consistent Feature (GCF) representation branch, the Local Consistent Feature (LCF) representation branch, and the Hypergraph Cross-Attention (HyperCA) network to model complex correlations through the global-local-consistent hypergraph representation learning. Specifically, the GCF branch employs a multi-pose grouping and aggregation strategy based on PCA for improved global comprehension. Simultaneously, the LCF branch uses local farthest reference point features to enhance local region descriptions. To capture high-order and complex global-local correlations, we construct hypergraphs that integrate both features, mutually enhancing and fusing the representations. The inductive HyperCA module leverages attention techniques to better utilize these high-order relations for comprehensive understanding. Consequently, GLC-HCAN offers an effective and robust rotation-invariant point cloud analysis network, suitable for object classification and shape retrieval tasks in SO(3). Experimental results on both synthetic and scanned point cloud datasets demonstrate that GLC-HCAN outperforms state-of-the-art methods.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"186-197\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10814079/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814079/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

旋转不变性点云分析对于许多现实世界的应用程序是必不可少的,在这些应用程序中,对象可以以任意方向出现。传统的局部旋转不变方法依赖于有损区域描述符,限制了对三维物体的全局理解。相反,从姿态对齐中获得的全局特征可以捕获互补信息。为了利用局部和全局一致性来提高准确性,我们提出了全局-局部一致超图交叉注意网络(GLC-HCAN)。该框架包括全局一致特征(GCF)表示分支、局部一致特征(LCF)表示分支和超图交叉注意(Hypergraph Cross-Attention, HyperCA)网络,通过全局-局部一致超图表示学习对复杂关联进行建模。具体而言,GCF分支采用了基于PCA的多姿态分组和聚合策略,以提高全局理解能力。同时,LCF分支使用本地最远参考点特征来增强本地区域描述。为了捕获高阶和复杂的全局-局部相关性,我们构建了整合这两个特征的超图,相互增强和融合表征。归纳式HyperCA模块利用注意力技术更好地利用这些高阶关系进行全面理解。因此,GLC-HCAN提供了一种有效且鲁棒的旋转不变点云分析网络,适用于SO(3)中的目标分类和形状检索任务。在合成点云和扫描点云数据集上的实验结果表明,GLC-HCAN优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring Local and Global Consistent Correlation on Hypergraph for Rotation Invariant Point Cloud Analysis
Rotation invariant point cloud analysis is essential for many real-world applications where objects can appear in arbitrary orientations. Traditional local rotation-invariant methods rely on lossy region descriptors, limiting the global comprehension of 3D objects. Conversely, global features derived from pose alignment can capture complementary information. To leverage both local and global consistency for enhanced accuracy, we propose the Global-Local-Consistent Hypergraph Cross-Attention Network (GLC-HCAN). This framework includes the Global Consistent Feature (GCF) representation branch, the Local Consistent Feature (LCF) representation branch, and the Hypergraph Cross-Attention (HyperCA) network to model complex correlations through the global-local-consistent hypergraph representation learning. Specifically, the GCF branch employs a multi-pose grouping and aggregation strategy based on PCA for improved global comprehension. Simultaneously, the LCF branch uses local farthest reference point features to enhance local region descriptions. To capture high-order and complex global-local correlations, we construct hypergraphs that integrate both features, mutually enhancing and fusing the representations. The inductive HyperCA module leverages attention techniques to better utilize these high-order relations for comprehensive understanding. Consequently, GLC-HCAN offers an effective and robust rotation-invariant point cloud analysis network, suitable for object classification and shape retrieval tasks in SO(3). Experimental results on both synthetic and scanned point cloud datasets demonstrate that GLC-HCAN outperforms state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Frequency-Guided Spatial Adaptation for Camouflaged Object Detection Cross-Scatter Sparse Dictionary Pair Learning for Cross-Domain Classification DPStyler: Dynamic PromptStyler for Source-Free Domain Generalization List of Reviewers Dual Semantic Reconstruction Network for Weakly Supervised Temporal Sentence Grounding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1