利用软交互和自我关注增强少镜头三维点云分类功能

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-12-23 DOI:10.1109/TMM.2024.3521849
Abdullah Aman Khan;Jie Shao;Sidra Shafiq;Shuyuan Zhu;Heng Tao Shen
{"title":"利用软交互和自我关注增强少镜头三维点云分类功能","authors":"Abdullah Aman Khan;Jie Shao;Sidra Shafiq;Shuyuan Zhu;Heng Tao Shen","doi":"10.1109/TMM.2024.3521849","DOIUrl":null,"url":null,"abstract":"Few-shot learning is a crucial aspect of modern machine learning that enables models to recognize and classify objects efficiently with limited training data. The shortage of labeled 3D point cloud data calls for innovative solutions, particularly when novel classes emerge more frequently. In this paper, we propose a novel few-shot learning method for recognizing 3D point clouds. More specifically, this paper addresses the challenges of applying few-shot learning to 3D point cloud data, which poses unique difficulties due to the unordered and irregular nature of these data. We propose two new modules for few-shot based 3D point cloud classification, i.e., the Soft Interaction Module (SIM) and Self-Attention Residual Feedforward (SARF) Module. These modules balance and enhance the feature representation by enabling more relevant feature interactions and capturing long-range dependencies between query and support features. To validate the effectiveness of the proposed method, extensive experiments are conducted on benchmark datasets, including ModelNet40, ShapeNetCore, and ScanObjectNN. Our approach demonstrates superior performance in handling abrupt feature changes occurring during the meta-learning process. The results of the experiments indicate the superiority of our proposed method by demonstrating its robust generalization ability and better classification performance for 3D point cloud data with limited training samples.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"1127-1141"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Few-Shot 3D Point Cloud Classification With Soft Interaction and Self-Attention\",\"authors\":\"Abdullah Aman Khan;Jie Shao;Sidra Shafiq;Shuyuan Zhu;Heng Tao Shen\",\"doi\":\"10.1109/TMM.2024.3521849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Few-shot learning is a crucial aspect of modern machine learning that enables models to recognize and classify objects efficiently with limited training data. The shortage of labeled 3D point cloud data calls for innovative solutions, particularly when novel classes emerge more frequently. In this paper, we propose a novel few-shot learning method for recognizing 3D point clouds. More specifically, this paper addresses the challenges of applying few-shot learning to 3D point cloud data, which poses unique difficulties due to the unordered and irregular nature of these data. We propose two new modules for few-shot based 3D point cloud classification, i.e., the Soft Interaction Module (SIM) and Self-Attention Residual Feedforward (SARF) Module. These modules balance and enhance the feature representation by enabling more relevant feature interactions and capturing long-range dependencies between query and support features. To validate the effectiveness of the proposed method, extensive experiments are conducted on benchmark datasets, including ModelNet40, ShapeNetCore, and ScanObjectNN. Our approach demonstrates superior performance in handling abrupt feature changes occurring during the meta-learning process. The results of the experiments indicate the superiority of our proposed method by demonstrating its robust generalization ability and better classification performance for 3D point cloud data with limited training samples.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"1127-1141\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10812858/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10812858/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Few-Shot 3D Point Cloud Classification With Soft Interaction and Self-Attention
Few-shot learning is a crucial aspect of modern machine learning that enables models to recognize and classify objects efficiently with limited training data. The shortage of labeled 3D point cloud data calls for innovative solutions, particularly when novel classes emerge more frequently. In this paper, we propose a novel few-shot learning method for recognizing 3D point clouds. More specifically, this paper addresses the challenges of applying few-shot learning to 3D point cloud data, which poses unique difficulties due to the unordered and irregular nature of these data. We propose two new modules for few-shot based 3D point cloud classification, i.e., the Soft Interaction Module (SIM) and Self-Attention Residual Feedforward (SARF) Module. These modules balance and enhance the feature representation by enabling more relevant feature interactions and capturing long-range dependencies between query and support features. To validate the effectiveness of the proposed method, extensive experiments are conducted on benchmark datasets, including ModelNet40, ShapeNetCore, and ScanObjectNN. Our approach demonstrates superior performance in handling abrupt feature changes occurring during the meta-learning process. The results of the experiments indicate the superiority of our proposed method by demonstrating its robust generalization ability and better classification performance for 3D point cloud data with limited training samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Enhancing Neural Adaptive Wireless Video Streaming via Cross-Layer Information Exposure and Online Tuning Learned Focused Plenoptic Image Compression With Local-Global Correlation Learning Frequency-Guided Spatial Adaptation for Camouflaged Object Detection Cross-Scatter Sparse Dictionary Pair Learning for Cross-Domain Classification Masked Video Pretraining Advances Real-World Video Denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1