废旧钴酸锂(LiCoO2)/石墨/铜混合物的循环利用:以相反梯度分布掺入铜,实现高速率和长循环能力

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2025-03-22 DOI:10.1016/j.ensm.2025.104201
Hai Lei, Xinwei Cui, Jiexiang Li, Zihao Zeng, Chao Zhu, Xiaobo Ji, Wei Sun, Yue Yang, Peng Ge
{"title":"废旧钴酸锂(LiCoO2)/石墨/铜混合物的循环利用:以相反梯度分布掺入铜,实现高速率和长循环能力","authors":"Hai Lei, Xinwei Cui, Jiexiang Li, Zihao Zeng, Chao Zhu, Xiaobo Ji, Wei Sun, Yue Yang, Peng Ge","doi":"10.1016/j.ensm.2025.104201","DOIUrl":null,"url":null,"abstract":"Attracted by remarkable environmental/economic advantages, the direct regeneration of spent LiCoO<sub>2</sub> (LCO) has been regarded as potential recycling method. However, limited by small-size and various designing-models, spent batteries are always industrially dismantled to obtain complex mixture, containing LCO, graphite, Cu-impurities, etc. Thus, exploring the synergetic effect of graphite removing and Cu-doping behaviors/threshold is crucial for the practical commercial production about spent mixture. Herein, spent mixtures are utilized to regenerate high-voltage LCO. Assisted by graphite self-heating and Li-vacancies, the doping-temperature and diffusion energy-barrier are lowering, facilitating Cu-atoms doping into bulk-phase. After optimizing Cu-content (0.7 wt.%), bulk-oriented doping at Li/Co sites is achieved with contrary gradient Cu-atoms distribution. Unique doping behaviors induce the evolution of morphology/lattice stability and the expanding of interlayer spacing. The as-optimized sample delivers a high capacity of 177.59 mAh g<sup>-1</sup> at 0.2 C. Even at 5.0 C after 500 cycles, its capacity could reach up to 154.8 mAh g<sup>-1</sup> with ∼82.4% retention. Supporting by electronic structure analysis, unique doping behaviors served as important roles in enhancing electronic conductivity and lowering O 2p band center. Given this, the work is expected to offer significant guidance of direct commercial regeneration, and shed light on the clear Cu-doping behaviors with threshold-value.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"3 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upcycling of Spent LiCoO2/Graphite/Cu Mixtures: Cu-doping with Contrary Gradient Distribution towards High-rate and Prolonged-cyclability\",\"authors\":\"Hai Lei, Xinwei Cui, Jiexiang Li, Zihao Zeng, Chao Zhu, Xiaobo Ji, Wei Sun, Yue Yang, Peng Ge\",\"doi\":\"10.1016/j.ensm.2025.104201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attracted by remarkable environmental/economic advantages, the direct regeneration of spent LiCoO<sub>2</sub> (LCO) has been regarded as potential recycling method. However, limited by small-size and various designing-models, spent batteries are always industrially dismantled to obtain complex mixture, containing LCO, graphite, Cu-impurities, etc. Thus, exploring the synergetic effect of graphite removing and Cu-doping behaviors/threshold is crucial for the practical commercial production about spent mixture. Herein, spent mixtures are utilized to regenerate high-voltage LCO. Assisted by graphite self-heating and Li-vacancies, the doping-temperature and diffusion energy-barrier are lowering, facilitating Cu-atoms doping into bulk-phase. After optimizing Cu-content (0.7 wt.%), bulk-oriented doping at Li/Co sites is achieved with contrary gradient Cu-atoms distribution. Unique doping behaviors induce the evolution of morphology/lattice stability and the expanding of interlayer spacing. The as-optimized sample delivers a high capacity of 177.59 mAh g<sup>-1</sup> at 0.2 C. Even at 5.0 C after 500 cycles, its capacity could reach up to 154.8 mAh g<sup>-1</sup> with ∼82.4% retention. Supporting by electronic structure analysis, unique doping behaviors served as important roles in enhancing electronic conductivity and lowering O 2p band center. Given this, the work is expected to offer significant guidance of direct commercial regeneration, and shed light on the clear Cu-doping behaviors with threshold-value.\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ensm.2025.104201\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2025.104201","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Upcycling of Spent LiCoO2/Graphite/Cu Mixtures: Cu-doping with Contrary Gradient Distribution towards High-rate and Prolonged-cyclability
Attracted by remarkable environmental/economic advantages, the direct regeneration of spent LiCoO2 (LCO) has been regarded as potential recycling method. However, limited by small-size and various designing-models, spent batteries are always industrially dismantled to obtain complex mixture, containing LCO, graphite, Cu-impurities, etc. Thus, exploring the synergetic effect of graphite removing and Cu-doping behaviors/threshold is crucial for the practical commercial production about spent mixture. Herein, spent mixtures are utilized to regenerate high-voltage LCO. Assisted by graphite self-heating and Li-vacancies, the doping-temperature and diffusion energy-barrier are lowering, facilitating Cu-atoms doping into bulk-phase. After optimizing Cu-content (0.7 wt.%), bulk-oriented doping at Li/Co sites is achieved with contrary gradient Cu-atoms distribution. Unique doping behaviors induce the evolution of morphology/lattice stability and the expanding of interlayer spacing. The as-optimized sample delivers a high capacity of 177.59 mAh g-1 at 0.2 C. Even at 5.0 C after 500 cycles, its capacity could reach up to 154.8 mAh g-1 with ∼82.4% retention. Supporting by electronic structure analysis, unique doping behaviors served as important roles in enhancing electronic conductivity and lowering O 2p band center. Given this, the work is expected to offer significant guidance of direct commercial regeneration, and shed light on the clear Cu-doping behaviors with threshold-value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Prolonged Cycle Life of Composite Cathodes via Ionically Permeable Li3PO4 Surface Engineering on Conductive Agents to Suppress Degradation of Sulfide Solid Electrolytes Enhanced Lithium Polysulfide Adsorption and Reaction with Cobalt-Doped Spinel Additives for Robust Lithium-Sulfur Batteries Self-cleaning all-fluorinated nonflammable electrolyte for high-voltage and high-temperature Li||NCM811 batteries Mechano-Electrical Buffer Layer at Grain Boundary Induced Solid State Electrolyte with Ultra-High Mechanical Strength and Electrical Insulation for Stable Lithium Metal Batteries Constructing Highly Active Sulfur Atoms on MoS₂ Surface via p-p Orbital Covalent Coupling Matching the Liquid-Solid Transition in Lithium-Sulfur Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1