Jingru Liu , Busheng Zhang , Haiping Yu , Tengfei Li , Mingjun Hu , Jun Yang
{"title":"一种新型抗氧化材料Mg@Ni用于安全、高效和可控制氢的泡沫材料","authors":"Jingru Liu , Busheng Zhang , Haiping Yu , Tengfei Li , Mingjun Hu , Jun Yang","doi":"10.1016/j.jma.2023.06.011","DOIUrl":null,"url":null,"abstract":"<div><div>As a promising in-situ hydrogen generation material, magnesium (Mg) has been seeking a promotion in its hydrogen generation property. Increasing the specific surface area, for example, replacing the Mg bulk using Mg powder, can greatly increase the hydrogen generation property, but it brings a high explosion risk, a difficulty in controlling the hydrogen generation, and an oxidation problem. In this work, we prepare a novel Mg@Ni foam material with Mg deposits on Ni foam by a physical vapor deposition method. The Ni foam not only increases the hydrolysis reaction areas of Mg by improving its specific surface area, but also kinetically accelerates the hydrolysis reaction rate of Mg by forming a uniform Mg-Ni galvanic cell. As a result, the Mg@Ni foam material realizes a near-theoretical hydrogen generation amount of Mg and a hydrogen generation rate significantly higher than those realized by the bulk Mg-based materials. The Mg@Ni foam material with the excellent hydrogen generation property is also free from explosion risk, easy to be controlled, and resistible to oxidation. A hydrogen fuel cell powered by the hydrogen generated by the Mg@Ni foam material can yield a steady voltage and run a small car for a long distance.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"12 10","pages":"Pages 4063-4074"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel oxidation-resistible Mg@Ni foam material for safe, efficient, and controllable hydrogen generation\",\"authors\":\"Jingru Liu , Busheng Zhang , Haiping Yu , Tengfei Li , Mingjun Hu , Jun Yang\",\"doi\":\"10.1016/j.jma.2023.06.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a promising in-situ hydrogen generation material, magnesium (Mg) has been seeking a promotion in its hydrogen generation property. Increasing the specific surface area, for example, replacing the Mg bulk using Mg powder, can greatly increase the hydrogen generation property, but it brings a high explosion risk, a difficulty in controlling the hydrogen generation, and an oxidation problem. In this work, we prepare a novel Mg@Ni foam material with Mg deposits on Ni foam by a physical vapor deposition method. The Ni foam not only increases the hydrolysis reaction areas of Mg by improving its specific surface area, but also kinetically accelerates the hydrolysis reaction rate of Mg by forming a uniform Mg-Ni galvanic cell. As a result, the Mg@Ni foam material realizes a near-theoretical hydrogen generation amount of Mg and a hydrogen generation rate significantly higher than those realized by the bulk Mg-based materials. The Mg@Ni foam material with the excellent hydrogen generation property is also free from explosion risk, easy to be controlled, and resistible to oxidation. A hydrogen fuel cell powered by the hydrogen generated by the Mg@Ni foam material can yield a steady voltage and run a small car for a long distance.</div></div>\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"12 10\",\"pages\":\"Pages 4063-4074\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213956723001275\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956723001275","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
A novel oxidation-resistible Mg@Ni foam material for safe, efficient, and controllable hydrogen generation
As a promising in-situ hydrogen generation material, magnesium (Mg) has been seeking a promotion in its hydrogen generation property. Increasing the specific surface area, for example, replacing the Mg bulk using Mg powder, can greatly increase the hydrogen generation property, but it brings a high explosion risk, a difficulty in controlling the hydrogen generation, and an oxidation problem. In this work, we prepare a novel Mg@Ni foam material with Mg deposits on Ni foam by a physical vapor deposition method. The Ni foam not only increases the hydrolysis reaction areas of Mg by improving its specific surface area, but also kinetically accelerates the hydrolysis reaction rate of Mg by forming a uniform Mg-Ni galvanic cell. As a result, the Mg@Ni foam material realizes a near-theoretical hydrogen generation amount of Mg and a hydrogen generation rate significantly higher than those realized by the bulk Mg-based materials. The Mg@Ni foam material with the excellent hydrogen generation property is also free from explosion risk, easy to be controlled, and resistible to oxidation. A hydrogen fuel cell powered by the hydrogen generated by the Mg@Ni foam material can yield a steady voltage and run a small car for a long distance.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.