Fei Chong Ng, A. Abas, M. N. Nashrudin, M. Y. Tura Ali
{"title":"倒装芯片底部填充封装过程中填充过程和空穴形成的分析与数值分析","authors":"Fei Chong Ng, A. Abas, M. N. Nashrudin, M. Y. Tura Ali","doi":"10.1108/ssmt-08-2021-0055","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to study the filling progression of underfill flow and void formation during the flip-chip encapsulation process.\n\n\nDesign/methodology/approach\nA new parameter of filling progression that relates volume fraction filled to filling displacement was formulated analytically. Another indicative parameter of filling efficiency was also introduced to quantify the voiding fraction in filling progression. Additionally, the underfill process on different flip-chips based on the past experiments was numerically simulated.\n\n\nFindings\nAll findings were well-validated with reference to the past experimental results, in terms of quantitative filling progression and qualitative flow profiles. The volume fraction filled increases monotonically with the filling displacement and thus the filling time. As the underfill fluid advances, the size of the void decreases while the filling efficiency increases. Furthermore, the void formed during the underfilling flow stage was caused by the accelerated contact line jump at the bump entrance.\n\n\nPractical implications\nThe filling progression enabled manufacturers to forecast the underfill flow front, as it advances through the flip-chip. Moreover, filling progression and filling efficiency could provide quantitative insights for the determination of void formations at any filling stages. The voiding formation mechanism enables the prompt formulation of countermeasures.\n\n\nOriginality/value\nBoth the filling progression and filling efficiency are new indicative parameters in quantifying the performance of the filling process while considering the reliability defects such as incomplete filling and voiding.\n","PeriodicalId":49499,"journal":{"name":"Soldering & Surface Mount Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical and numerical analyses of filling progression and void formation in flip-chip underfill encapsulation process\",\"authors\":\"Fei Chong Ng, A. Abas, M. N. Nashrudin, M. Y. Tura Ali\",\"doi\":\"10.1108/ssmt-08-2021-0055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis paper aims to study the filling progression of underfill flow and void formation during the flip-chip encapsulation process.\\n\\n\\nDesign/methodology/approach\\nA new parameter of filling progression that relates volume fraction filled to filling displacement was formulated analytically. Another indicative parameter of filling efficiency was also introduced to quantify the voiding fraction in filling progression. Additionally, the underfill process on different flip-chips based on the past experiments was numerically simulated.\\n\\n\\nFindings\\nAll findings were well-validated with reference to the past experimental results, in terms of quantitative filling progression and qualitative flow profiles. The volume fraction filled increases monotonically with the filling displacement and thus the filling time. As the underfill fluid advances, the size of the void decreases while the filling efficiency increases. Furthermore, the void formed during the underfilling flow stage was caused by the accelerated contact line jump at the bump entrance.\\n\\n\\nPractical implications\\nThe filling progression enabled manufacturers to forecast the underfill flow front, as it advances through the flip-chip. Moreover, filling progression and filling efficiency could provide quantitative insights for the determination of void formations at any filling stages. The voiding formation mechanism enables the prompt formulation of countermeasures.\\n\\n\\nOriginality/value\\nBoth the filling progression and filling efficiency are new indicative parameters in quantifying the performance of the filling process while considering the reliability defects such as incomplete filling and voiding.\\n\",\"PeriodicalId\":49499,\"journal\":{\"name\":\"Soldering & Surface Mount Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soldering & Surface Mount Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/ssmt-08-2021-0055\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soldering & Surface Mount Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/ssmt-08-2021-0055","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Analytical and numerical analyses of filling progression and void formation in flip-chip underfill encapsulation process
Purpose
This paper aims to study the filling progression of underfill flow and void formation during the flip-chip encapsulation process.
Design/methodology/approach
A new parameter of filling progression that relates volume fraction filled to filling displacement was formulated analytically. Another indicative parameter of filling efficiency was also introduced to quantify the voiding fraction in filling progression. Additionally, the underfill process on different flip-chips based on the past experiments was numerically simulated.
Findings
All findings were well-validated with reference to the past experimental results, in terms of quantitative filling progression and qualitative flow profiles. The volume fraction filled increases monotonically with the filling displacement and thus the filling time. As the underfill fluid advances, the size of the void decreases while the filling efficiency increases. Furthermore, the void formed during the underfilling flow stage was caused by the accelerated contact line jump at the bump entrance.
Practical implications
The filling progression enabled manufacturers to forecast the underfill flow front, as it advances through the flip-chip. Moreover, filling progression and filling efficiency could provide quantitative insights for the determination of void formations at any filling stages. The voiding formation mechanism enables the prompt formulation of countermeasures.
Originality/value
Both the filling progression and filling efficiency are new indicative parameters in quantifying the performance of the filling process while considering the reliability defects such as incomplete filling and voiding.
期刊介绍:
Soldering & Surface Mount Technology seeks to make an important contribution to the advancement of research and application within the technical body of knowledge and expertise in this vital area. Soldering & Surface Mount Technology compliments its sister publications; Circuit World and Microelectronics International.
The journal covers all aspects of SMT from alloys, pastes and fluxes, to reliability and environmental effects, and is currently providing an important dissemination route for new knowledge on lead-free solders and processes. The journal comprises a multidisciplinary study of the key materials and technologies used to assemble state of the art functional electronic devices. The key focus is on assembling devices and interconnecting components via soldering, whilst also embracing a broad range of related approaches.