{"title":"使用图像处理技术的基于优化的深度学习模型检测锡膏缺陷","authors":"A. Sezer, Aytaç Altan","doi":"10.1108/ssmt-04-2021-0013","DOIUrl":null,"url":null,"abstract":"\nPurpose\nIn the production processes of electronic devices, production activities are interrupted due to the problems caused by soldering defects during the assembly of surface-mounted elements on printed circuit boards (PCBs), and this leads to an increase in production costs. In solder paste applications, defects that may occur in electronic cards are usually noticed at the last stage of the production process. This situation reduces the efficiency of production and causes delays in the delivery schedule of critical systems. This study aims to overcome these problems, optimization based deep learning model has been proposed by using 2D signal processing methods.\n\nDesign/methodology/approach\nAn optimization-based deep learning model is proposed by using image-processing techniques to detect solder paste defects on PCBs with high performance at an early stage. Convolutional neural network, one of the deep learning methods, is trained using the data set obtained for this study, and pad regions on PCB are classified.\n\nFindings\nA total of six types of classes used in the study consist of uncorrectable soldering, missing soldering, excess soldering, short circuit, undefined object and correct soldering, which are frequently used in the literature. The validity of the model has been tested on the data set consisting of 648 test data.\n\nOriginality/value\nThe effect of image processing and optimization methods on model performance is examined. With the help of the proposed model, defective solder paste areas on PCBs are detected, and these regions are visualized by taking them into a frame.\n","PeriodicalId":49499,"journal":{"name":"Soldering & Surface Mount Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"Detection of solder paste defects with an optimization‐based deep learning model using image processing techniques\",\"authors\":\"A. Sezer, Aytaç Altan\",\"doi\":\"10.1108/ssmt-04-2021-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nIn the production processes of electronic devices, production activities are interrupted due to the problems caused by soldering defects during the assembly of surface-mounted elements on printed circuit boards (PCBs), and this leads to an increase in production costs. In solder paste applications, defects that may occur in electronic cards are usually noticed at the last stage of the production process. This situation reduces the efficiency of production and causes delays in the delivery schedule of critical systems. This study aims to overcome these problems, optimization based deep learning model has been proposed by using 2D signal processing methods.\\n\\nDesign/methodology/approach\\nAn optimization-based deep learning model is proposed by using image-processing techniques to detect solder paste defects on PCBs with high performance at an early stage. Convolutional neural network, one of the deep learning methods, is trained using the data set obtained for this study, and pad regions on PCB are classified.\\n\\nFindings\\nA total of six types of classes used in the study consist of uncorrectable soldering, missing soldering, excess soldering, short circuit, undefined object and correct soldering, which are frequently used in the literature. The validity of the model has been tested on the data set consisting of 648 test data.\\n\\nOriginality/value\\nThe effect of image processing and optimization methods on model performance is examined. With the help of the proposed model, defective solder paste areas on PCBs are detected, and these regions are visualized by taking them into a frame.\\n\",\"PeriodicalId\":49499,\"journal\":{\"name\":\"Soldering & Surface Mount Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soldering & Surface Mount Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/ssmt-04-2021-0013\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soldering & Surface Mount Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/ssmt-04-2021-0013","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Detection of solder paste defects with an optimization‐based deep learning model using image processing techniques
Purpose
In the production processes of electronic devices, production activities are interrupted due to the problems caused by soldering defects during the assembly of surface-mounted elements on printed circuit boards (PCBs), and this leads to an increase in production costs. In solder paste applications, defects that may occur in electronic cards are usually noticed at the last stage of the production process. This situation reduces the efficiency of production and causes delays in the delivery schedule of critical systems. This study aims to overcome these problems, optimization based deep learning model has been proposed by using 2D signal processing methods.
Design/methodology/approach
An optimization-based deep learning model is proposed by using image-processing techniques to detect solder paste defects on PCBs with high performance at an early stage. Convolutional neural network, one of the deep learning methods, is trained using the data set obtained for this study, and pad regions on PCB are classified.
Findings
A total of six types of classes used in the study consist of uncorrectable soldering, missing soldering, excess soldering, short circuit, undefined object and correct soldering, which are frequently used in the literature. The validity of the model has been tested on the data set consisting of 648 test data.
Originality/value
The effect of image processing and optimization methods on model performance is examined. With the help of the proposed model, defective solder paste areas on PCBs are detected, and these regions are visualized by taking them into a frame.
期刊介绍:
Soldering & Surface Mount Technology seeks to make an important contribution to the advancement of research and application within the technical body of knowledge and expertise in this vital area. Soldering & Surface Mount Technology compliments its sister publications; Circuit World and Microelectronics International.
The journal covers all aspects of SMT from alloys, pastes and fluxes, to reliability and environmental effects, and is currently providing an important dissemination route for new knowledge on lead-free solders and processes. The journal comprises a multidisciplinary study of the key materials and technologies used to assemble state of the art functional electronic devices. The key focus is on assembling devices and interconnecting components via soldering, whilst also embracing a broad range of related approaches.