{"title":"基于眼底图像的糖尿病视网膜病变自动分类的混合卷积神经网络模型","authors":"Ghulam Ali;Aqsa Dastgir;Muhammad Waseem Iqbal;Muhammad Anwar;Muhammad Faheem","doi":"10.1109/JTEHM.2023.3282104","DOIUrl":null,"url":null,"abstract":"<italic>Objective:</i>\n Diabetic Retinopathy (DR) is a retinal disease that can cause damage to blood vessels in the eye, that is the major cause of impaired vision or blindness, if not treated early. Manual detection of diabetic retinopathy is time-consuming and prone to human error due to the complex structure of the eye. \n<italic>Methods & Results:</i>\n various automatic techniques have been proposed to detect diabetic retinopathy from fundus images. However, these techniques are limited in their ability to capture the complex features underlying diabetic retinopathy, particularly in the early stages. In this study, we propose a novel approach to detect diabetic retinopathy using a convolutional neural network (CNN) model. The proposed model extracts features using two different deep learning (DL) models, Resnet50 and Inceptionv3, and concatenates them before feeding them into the CNN for classification. The proposed model is evaluated on a publicly available dataset of fundus images. The experimental results demonstrate that the proposed CNN model achieves higher accuracy, sensitivity, specificity, precision, and f1 score compared to state-of-the-art methods, with respective scores of 96.85%, 99.28%, 98.92%, 96.46%, and 98.65%.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"11 ","pages":"341-350"},"PeriodicalIF":3.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6221039/9961067/10142165.pdf","citationCount":"4","resultStr":"{\"title\":\"A Hybrid Convolutional Neural Network Model for Automatic Diabetic Retinopathy Classification From Fundus Images\",\"authors\":\"Ghulam Ali;Aqsa Dastgir;Muhammad Waseem Iqbal;Muhammad Anwar;Muhammad Faheem\",\"doi\":\"10.1109/JTEHM.2023.3282104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<italic>Objective:</i>\\n Diabetic Retinopathy (DR) is a retinal disease that can cause damage to blood vessels in the eye, that is the major cause of impaired vision or blindness, if not treated early. Manual detection of diabetic retinopathy is time-consuming and prone to human error due to the complex structure of the eye. \\n<italic>Methods & Results:</i>\\n various automatic techniques have been proposed to detect diabetic retinopathy from fundus images. However, these techniques are limited in their ability to capture the complex features underlying diabetic retinopathy, particularly in the early stages. In this study, we propose a novel approach to detect diabetic retinopathy using a convolutional neural network (CNN) model. The proposed model extracts features using two different deep learning (DL) models, Resnet50 and Inceptionv3, and concatenates them before feeding them into the CNN for classification. The proposed model is evaluated on a publicly available dataset of fundus images. The experimental results demonstrate that the proposed CNN model achieves higher accuracy, sensitivity, specificity, precision, and f1 score compared to state-of-the-art methods, with respective scores of 96.85%, 99.28%, 98.92%, 96.46%, and 98.65%.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"11 \",\"pages\":\"341-350\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/6221039/9961067/10142165.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10142165/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10142165/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Hybrid Convolutional Neural Network Model for Automatic Diabetic Retinopathy Classification From Fundus Images
Objective:
Diabetic Retinopathy (DR) is a retinal disease that can cause damage to blood vessels in the eye, that is the major cause of impaired vision or blindness, if not treated early. Manual detection of diabetic retinopathy is time-consuming and prone to human error due to the complex structure of the eye.
Methods & Results:
various automatic techniques have been proposed to detect diabetic retinopathy from fundus images. However, these techniques are limited in their ability to capture the complex features underlying diabetic retinopathy, particularly in the early stages. In this study, we propose a novel approach to detect diabetic retinopathy using a convolutional neural network (CNN) model. The proposed model extracts features using two different deep learning (DL) models, Resnet50 and Inceptionv3, and concatenates them before feeding them into the CNN for classification. The proposed model is evaluated on a publicly available dataset of fundus images. The experimental results demonstrate that the proposed CNN model achieves higher accuracy, sensitivity, specificity, precision, and f1 score compared to state-of-the-art methods, with respective scores of 96.85%, 99.28%, 98.92%, 96.46%, and 98.65%.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.