基于同步相变纳米振荡器的口语元音分类

S. Dutta, A. Khanna, W. Chakraborty, J. Gomez, S. Joshi, S. Datta
{"title":"基于同步相变纳米振荡器的口语元音分类","authors":"S. Dutta, A. Khanna, W. Chakraborty, J. Gomez, S. Joshi, S. Datta","doi":"10.23919/VLSIT.2019.8776534","DOIUrl":null,"url":null,"abstract":"The paradigm of biologically-inspired computing endows the components of a neural network with dynamical functionality, such as self-oscillations, and harnesses emergent physical phenomena like synchronization, to learn and classify complex temporal patterns. In this work, we exploit the synchronization dynamics of a network of ultra-compact, low power Vanadium dioxide (VO2) based insulator-to-metal phase-transition nano-oscillators (IMT-NO) to classify complex temporal pattern for speech discrimination. We successfully train a network of four capacitively coupled IMT-NOs to recognize spoken vowels by tuning their oscillation frequencies electrically according to a real-time learning rule and achieve high recognition rates of 90.5% for spoken vowels. Such an energy-efficient compact hardware with a small number of functional elements are a promising technology option for edge artificial intelligence.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"44 4","pages":"T128-T129"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Spoken vowel classification using synchronization of phase transition nano-oscillators\",\"authors\":\"S. Dutta, A. Khanna, W. Chakraborty, J. Gomez, S. Joshi, S. Datta\",\"doi\":\"10.23919/VLSIT.2019.8776534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paradigm of biologically-inspired computing endows the components of a neural network with dynamical functionality, such as self-oscillations, and harnesses emergent physical phenomena like synchronization, to learn and classify complex temporal patterns. In this work, we exploit the synchronization dynamics of a network of ultra-compact, low power Vanadium dioxide (VO2) based insulator-to-metal phase-transition nano-oscillators (IMT-NO) to classify complex temporal pattern for speech discrimination. We successfully train a network of four capacitively coupled IMT-NOs to recognize spoken vowels by tuning their oscillation frequencies electrically according to a real-time learning rule and achieve high recognition rates of 90.5% for spoken vowels. Such an energy-efficient compact hardware with a small number of functional elements are a promising technology option for edge artificial intelligence.\",\"PeriodicalId\":6752,\"journal\":{\"name\":\"2019 Symposium on VLSI Technology\",\"volume\":\"44 4\",\"pages\":\"T128-T129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIT.2019.8776534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

受生物启发的计算范式赋予神经网络的组件动态功能,如自振荡,并利用同步等紧急物理现象来学习和分类复杂的时间模式。在这项工作中,我们利用超紧凑,低功耗的基于二氧化钒(VO2)的绝缘体-金属相变纳米振荡器(IMT-NO)网络的同步动力学来分类复杂的时间模式,用于语音识别。我们成功地训练了一个由四个电容耦合的IMT-NOs组成的网络,根据实时学习规则通过电调谐它们的振荡频率来识别口语元音,并实现了90.5%的口语元音识别率。这种具有少量功能元素的节能紧凑硬件是边缘人工智能的一个有前途的技术选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spoken vowel classification using synchronization of phase transition nano-oscillators
The paradigm of biologically-inspired computing endows the components of a neural network with dynamical functionality, such as self-oscillations, and harnesses emergent physical phenomena like synchronization, to learn and classify complex temporal patterns. In this work, we exploit the synchronization dynamics of a network of ultra-compact, low power Vanadium dioxide (VO2) based insulator-to-metal phase-transition nano-oscillators (IMT-NO) to classify complex temporal pattern for speech discrimination. We successfully train a network of four capacitively coupled IMT-NOs to recognize spoken vowels by tuning their oscillation frequencies electrically according to a real-time learning rule and achieve high recognition rates of 90.5% for spoken vowels. Such an energy-efficient compact hardware with a small number of functional elements are a promising technology option for edge artificial intelligence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Economics of semiconductor scaling - a cost analysis for advanced technology node Transient Negative Capacitance as Cause of Reverse Drain-induced Barrier Lowering and Negative Differential Resistance in Ferroelectric FETs Confined PCM-based Analog Synaptic Devices offering Low Resistance-drift and 1000 Programmable States for Deep Learning High Performance Heterogeneous Integration on Fan-out RDL Interposer Technology challenges and enablers to extend Cu metallization to beyond 7 nm node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1