极紧凑的STT-MRAM神经元:通往全自旋人工深度神经网络的途径

Ming-Hung Wu, Ming-Chun Hong, Chih-Cheng Chang, P. Sahu, Jeng-Hua Wei, Heng-Yuan Lee, Shyh-Shyuan Shcu, T. Hou
{"title":"极紧凑的STT-MRAM神经元:通往全自旋人工深度神经网络的途径","authors":"Ming-Hung Wu, Ming-Chun Hong, Chih-Cheng Chang, P. Sahu, Jeng-Hua Wei, Heng-Yuan Lee, Shyh-Shyuan Shcu, T. Hou","doi":"10.23919/VLSIT.2019.8776569","DOIUrl":null,"url":null,"abstract":"This work reports the complete framework from device to architecture for deep learning acceleration in an all-spin artificial neural network (ANN) built by highly manufacturable STT-MRAM technology. The most compact analog integrate-and-fire neuron reported to date is developed based on the back-hopping oscillation in magnetic tunnel junctions. This novel device is unique because it performs numerous essential neural functions simultaneously, including current integration, voltage spike generation, state reset, and 4-bit precision. The device itself is also a stochastic binary synapse, and thus eases the implementation of the compact all-spin ANN with high accuracy for online training.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"15 1","pages":"T34-T35"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Extremely Compact Integrate-and-Fire STT-MRAM Neuron: A Pathway toward All-Spin Artificial Deep Neural Network\",\"authors\":\"Ming-Hung Wu, Ming-Chun Hong, Chih-Cheng Chang, P. Sahu, Jeng-Hua Wei, Heng-Yuan Lee, Shyh-Shyuan Shcu, T. Hou\",\"doi\":\"10.23919/VLSIT.2019.8776569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work reports the complete framework from device to architecture for deep learning acceleration in an all-spin artificial neural network (ANN) built by highly manufacturable STT-MRAM technology. The most compact analog integrate-and-fire neuron reported to date is developed based on the back-hopping oscillation in magnetic tunnel junctions. This novel device is unique because it performs numerous essential neural functions simultaneously, including current integration, voltage spike generation, state reset, and 4-bit precision. The device itself is also a stochastic binary synapse, and thus eases the implementation of the compact all-spin ANN with high accuracy for online training.\",\"PeriodicalId\":6752,\"journal\":{\"name\":\"2019 Symposium on VLSI Technology\",\"volume\":\"15 1\",\"pages\":\"T34-T35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIT.2019.8776569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

基于磁隧道结的回跳振荡,开发了迄今为止报道的最紧凑的模拟积分-放电神经元。这种新颖的设备是独一无二的,因为它同时执行许多基本的神经功能,包括电流集成、电压尖峰产生、状态复位和4位精度。该装置本身也是一个随机二元突触,从而简化了紧凑的全自旋神经网络的实现,具有高精度的在线训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extremely Compact Integrate-and-Fire STT-MRAM Neuron: A Pathway toward All-Spin Artificial Deep Neural Network
This work reports the complete framework from device to architecture for deep learning acceleration in an all-spin artificial neural network (ANN) built by highly manufacturable STT-MRAM technology. The most compact analog integrate-and-fire neuron reported to date is developed based on the back-hopping oscillation in magnetic tunnel junctions. This novel device is unique because it performs numerous essential neural functions simultaneously, including current integration, voltage spike generation, state reset, and 4-bit precision. The device itself is also a stochastic binary synapse, and thus eases the implementation of the compact all-spin ANN with high accuracy for online training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Economics of semiconductor scaling - a cost analysis for advanced technology node Transient Negative Capacitance as Cause of Reverse Drain-induced Barrier Lowering and Negative Differential Resistance in Ferroelectric FETs Confined PCM-based Analog Synaptic Devices offering Low Resistance-drift and 1000 Programmable States for Deep Learning High Performance Heterogeneous Integration on Fan-out RDL Interposer Technology challenges and enablers to extend Cu metallization to beyond 7 nm node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1