Masato Hayashi, Takashi Takemoto, C. Yoshimura, M. Yamaoka
{"title":"解决大规模组合优化问题的云就绪可扩展退火处理器","authors":"Masato Hayashi, Takashi Takemoto, C. Yoshimura, M. Yamaoka","doi":"10.23919/VLSIT.2019.8776512","DOIUrl":null,"url":null,"abstract":"This paper presents a CMOS annealing processor (CMOS-AP) that accelerates ground state searches of the Ising model. The main feature of this processor is its inter-chip connection interface for making a larger chip. A credit card sized compute node integrating two CMOS-APs was also developed as an interface with existing computer systems. The compute node can handle up to 61,952 spins at a time. A performance evaluation using the node improved the CPU speed by 55 times in solving a minimum vertex cover problem, one of the NP-hard combinatorial optimization problems. Finally, we describe a cloud interface for the compute node to make the CMOS-APs more useful and to promote application development for it.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"5 1","pages":"C148-C149"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Cloud-ready Scalable Annealing Processor for Solving Large-scale Combinatorial Optimization Problems\",\"authors\":\"Masato Hayashi, Takashi Takemoto, C. Yoshimura, M. Yamaoka\",\"doi\":\"10.23919/VLSIT.2019.8776512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a CMOS annealing processor (CMOS-AP) that accelerates ground state searches of the Ising model. The main feature of this processor is its inter-chip connection interface for making a larger chip. A credit card sized compute node integrating two CMOS-APs was also developed as an interface with existing computer systems. The compute node can handle up to 61,952 spins at a time. A performance evaluation using the node improved the CPU speed by 55 times in solving a minimum vertex cover problem, one of the NP-hard combinatorial optimization problems. Finally, we describe a cloud interface for the compute node to make the CMOS-APs more useful and to promote application development for it.\",\"PeriodicalId\":6752,\"journal\":{\"name\":\"2019 Symposium on VLSI Technology\",\"volume\":\"5 1\",\"pages\":\"C148-C149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIT.2019.8776512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Cloud-ready Scalable Annealing Processor for Solving Large-scale Combinatorial Optimization Problems
This paper presents a CMOS annealing processor (CMOS-AP) that accelerates ground state searches of the Ising model. The main feature of this processor is its inter-chip connection interface for making a larger chip. A credit card sized compute node integrating two CMOS-APs was also developed as an interface with existing computer systems. The compute node can handle up to 61,952 spins at a time. A performance evaluation using the node improved the CPU speed by 55 times in solving a minimum vertex cover problem, one of the NP-hard combinatorial optimization problems. Finally, we describe a cloud interface for the compute node to make the CMOS-APs more useful and to promote application development for it.