自贴合栅极触点(SAGC)的CMOS技术的规模超过7nm

R. Xie, Chanro Park, R. Conti, R. Robison, Huimei Zhou, I. Saraf, A. Carr, S. Fan, K. Ryan, M. Belyansky, S. Pancharatnam, A. Young, Junli Wang, A. Greene, K. Cheng, Juntao Li, R. Conte, Hao Tang, K. Choi, H. Amanapu, B. Peethala, R. Muthinti, M. Raymond, C. Prindle, Yong Liang, S. Tsai, V. Kamineni, A. Labonté, N. Cave, D. Gupta, V. Basker, N. Loubet, D. Guo, B. Haran, A. Knorr, H. Bu
{"title":"自贴合栅极触点(SAGC)的CMOS技术的规模超过7nm","authors":"R. Xie, Chanro Park, R. Conti, R. Robison, Huimei Zhou, I. Saraf, A. Carr, S. Fan, K. Ryan, M. Belyansky, S. Pancharatnam, A. Young, Junli Wang, A. Greene, K. Cheng, Juntao Li, R. Conte, Hao Tang, K. Choi, H. Amanapu, B. Peethala, R. Muthinti, M. Raymond, C. Prindle, Yong Liang, S. Tsai, V. Kamineni, A. Labonté, N. Cave, D. Gupta, V. Basker, N. Loubet, D. Guo, B. Haran, A. Knorr, H. Bu","doi":"10.23919/VLSIT.2019.8776492","DOIUrl":null,"url":null,"abstract":"We demonstrate a novel self-aligned gate contact (SAGC) scheme with conventional oxide/nitride materials that allows superior process integration for scaling while simplifying the SRAM cross-couple wiring. We show that the key feature to avoid both gate-contact (CB) to source-drain local interconnect (LI) shorts and the LI-contact (CA) to gate shorts is the shape of the LI cap. A trapezoid-shaped oxide (SiO2) LI cap with an appropriate taper angle eliminates shorting between the contacts in the gate and source-drain region. We further demonstrate that this oxide LI cap is fully compatible with Cobalt (Co) metallization with a novel selective tungsten (W) growth process. Additionally, this process enables the SRAM cross-couple (XC) in the same metallization level, eliminating the need for an upper level wiring and greatly simplifying routing in the SRAM cell.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"35 1","pages":"T148-T149"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Self-Allancd Gate Contact (SAGC) for CMOS technology scaling beyond 7nm\",\"authors\":\"R. Xie, Chanro Park, R. Conti, R. Robison, Huimei Zhou, I. Saraf, A. Carr, S. Fan, K. Ryan, M. Belyansky, S. Pancharatnam, A. Young, Junli Wang, A. Greene, K. Cheng, Juntao Li, R. Conte, Hao Tang, K. Choi, H. Amanapu, B. Peethala, R. Muthinti, M. Raymond, C. Prindle, Yong Liang, S. Tsai, V. Kamineni, A. Labonté, N. Cave, D. Gupta, V. Basker, N. Loubet, D. Guo, B. Haran, A. Knorr, H. Bu\",\"doi\":\"10.23919/VLSIT.2019.8776492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate a novel self-aligned gate contact (SAGC) scheme with conventional oxide/nitride materials that allows superior process integration for scaling while simplifying the SRAM cross-couple wiring. We show that the key feature to avoid both gate-contact (CB) to source-drain local interconnect (LI) shorts and the LI-contact (CA) to gate shorts is the shape of the LI cap. A trapezoid-shaped oxide (SiO2) LI cap with an appropriate taper angle eliminates shorting between the contacts in the gate and source-drain region. We further demonstrate that this oxide LI cap is fully compatible with Cobalt (Co) metallization with a novel selective tungsten (W) growth process. Additionally, this process enables the SRAM cross-couple (XC) in the same metallization level, eliminating the need for an upper level wiring and greatly simplifying routing in the SRAM cell.\",\"PeriodicalId\":6752,\"journal\":{\"name\":\"2019 Symposium on VLSI Technology\",\"volume\":\"35 1\",\"pages\":\"T148-T149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIT.2019.8776492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们展示了一种采用传统氧化物/氮化物材料的新型自对准栅极接触(SAGC)方案,该方案允许在简化SRAM交叉耦合布线的同时实现卓越的工艺集成。研究表明,避免栅极触点(CB)到源漏局部互连(LI)短路和LI触点(CA)到栅极短路的关键特征是LI帽的形状。具有适当锥度的梯形氧化物(SiO2) LI帽可消除栅极和源漏区域触点之间的短路。我们进一步证明了这种氧化物LI帽与钴(Co)金属化完全兼容,并采用了一种新的选择性钨(W)生长工艺。此外,该工艺使SRAM交叉耦合(XC)处于相同的金属化水平,消除了对上层布线的需要,并大大简化了SRAM单元中的路由。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-Allancd Gate Contact (SAGC) for CMOS technology scaling beyond 7nm
We demonstrate a novel self-aligned gate contact (SAGC) scheme with conventional oxide/nitride materials that allows superior process integration for scaling while simplifying the SRAM cross-couple wiring. We show that the key feature to avoid both gate-contact (CB) to source-drain local interconnect (LI) shorts and the LI-contact (CA) to gate shorts is the shape of the LI cap. A trapezoid-shaped oxide (SiO2) LI cap with an appropriate taper angle eliminates shorting between the contacts in the gate and source-drain region. We further demonstrate that this oxide LI cap is fully compatible with Cobalt (Co) metallization with a novel selective tungsten (W) growth process. Additionally, this process enables the SRAM cross-couple (XC) in the same metallization level, eliminating the need for an upper level wiring and greatly simplifying routing in the SRAM cell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Economics of semiconductor scaling - a cost analysis for advanced technology node Transient Negative Capacitance as Cause of Reverse Drain-induced Barrier Lowering and Negative Differential Resistance in Ferroelectric FETs Confined PCM-based Analog Synaptic Devices offering Low Resistance-drift and 1000 Programmable States for Deep Learning High Performance Heterogeneous Integration on Fan-out RDL Interposer Technology challenges and enablers to extend Cu metallization to beyond 7 nm node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1