{"title":"实现高热稳定性集成电路的近零电阻系数氮化锰电阻器的研制","authors":"H. Kino, T. Fukushima, Tetsu Tanaka","doi":"10.1109/IITC51362.2021.9537336","DOIUrl":null,"url":null,"abstract":"The resistance of the metal wirings in the integrated circuits increases due to the decrease of the mean free path of electrons with the temperature increase. This thermal instability requires redundancy circuits. On the other hand, several materials have the saturation characteristics of the mean free path around room temperature. The anti-perovskite manganese nitride compound material is one of them. The anti-perovskite manganese nitride compounds show a flat resistance-temperature curve around room temperature. However, the flat resistance-temperature curves have been obtained with only the sintered bulk materials. It has not become clear the characteristics of the manganese nitride compounds in the micro/nanoscale. In this study, we proposed manganese nitride wiring for high-thermal-stability systems. Then, we fabricated and evaluated the micro/nanoscale manganese nitride compound wiring with the complementary metal-oxide-semiconductor compatible process.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of Manganese Nitride Resistor with Near-Zero Temperature-Coefficient of Resistance to Achieve High-Thermal-Stability ICs\",\"authors\":\"H. Kino, T. Fukushima, Tetsu Tanaka\",\"doi\":\"10.1109/IITC51362.2021.9537336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The resistance of the metal wirings in the integrated circuits increases due to the decrease of the mean free path of electrons with the temperature increase. This thermal instability requires redundancy circuits. On the other hand, several materials have the saturation characteristics of the mean free path around room temperature. The anti-perovskite manganese nitride compound material is one of them. The anti-perovskite manganese nitride compounds show a flat resistance-temperature curve around room temperature. However, the flat resistance-temperature curves have been obtained with only the sintered bulk materials. It has not become clear the characteristics of the manganese nitride compounds in the micro/nanoscale. In this study, we proposed manganese nitride wiring for high-thermal-stability systems. Then, we fabricated and evaluated the micro/nanoscale manganese nitride compound wiring with the complementary metal-oxide-semiconductor compatible process.\",\"PeriodicalId\":6823,\"journal\":{\"name\":\"2021 IEEE International Interconnect Technology Conference (IITC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Interconnect Technology Conference (IITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC51362.2021.9537336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Interconnect Technology Conference (IITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC51362.2021.9537336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Manganese Nitride Resistor with Near-Zero Temperature-Coefficient of Resistance to Achieve High-Thermal-Stability ICs
The resistance of the metal wirings in the integrated circuits increases due to the decrease of the mean free path of electrons with the temperature increase. This thermal instability requires redundancy circuits. On the other hand, several materials have the saturation characteristics of the mean free path around room temperature. The anti-perovskite manganese nitride compound material is one of them. The anti-perovskite manganese nitride compounds show a flat resistance-temperature curve around room temperature. However, the flat resistance-temperature curves have been obtained with only the sintered bulk materials. It has not become clear the characteristics of the manganese nitride compounds in the micro/nanoscale. In this study, we proposed manganese nitride wiring for high-thermal-stability systems. Then, we fabricated and evaluated the micro/nanoscale manganese nitride compound wiring with the complementary metal-oxide-semiconductor compatible process.