第一个垂直叠加,压缩压缩和三角形Ge0.91Sn0.09pGAAFETs,高$\mathbf{I_{ON}}$ $\mathbf{19.3}\mu \mathbf{A}\ \mathbf{at}\ \mathbf{V_{OV}}=\mathbf{V}} {\mathbf{DS}}=\mathbf{-0.5V}, $\mathbf{G} {\mathbf{m}}$ $\mathbf{50.2}\mu \mathbf{S}$ at $\mathbf{V_{DS}}=\mat

Yu-Shiang Huang, Hung-Yu Ye, Fang-Liang Lu, Yi-Chun Liu, Chien-Te Tu, Chung-yi Lin, Shih-Ya Lin, Sun-Rang Jan, C. W. Liu
{"title":"第一个垂直叠加,压缩压缩和三角形Ge0.91Sn0.09pGAAFETs,高$\\mathbf{I_{ON}}$ $\\mathbf{19.3}\\mu \\mathbf{A}\\ \\mathbf{at}\\ \\mathbf{V_{OV}}=\\mathbf{V}} {\\mathbf{DS}}=\\mathbf{-0.5V}, $\\mathbf{G} {\\mathbf{m}}$ $\\mathbf{50.2}\\mu \\mathbf{S}$ at $\\mathbf{V_{DS}}=\\mat","authors":"Yu-Shiang Huang, Hung-Yu Ye, Fang-Liang Lu, Yi-Chun Liu, Chien-Te Tu, Chung-yi Lin, Shih-Ya Lin, Sun-Rang Jan, C. W. Liu","doi":"10.23919/VLSIT.2019.8776550","DOIUrl":null,"url":null,"abstract":"The natural etching stop on {111} facets yields the small dangling bond density and roughness, enabling low SS and high <tex>$\\text{I}_{\\text{ON}}$</tex> on {111} sidewalls of the GAA channels. In addition, the <tex>$\\sim 2\\%$</tex> uniaxial compressive strain and <tex>$[\\text{Sn}]=9\\%$</tex> in the channel can reduce the hole effective mass. As a result, 50% improvement of <tex>$\\text{I}_{\\text{ON}}= 120\\mu \\text{A}/\\mu\\text{m}$</tex> (perimeter), and 71% improvement of <tex>$\\text{G}_{\\text{m}}=312\\mu \\text{S}/\\mu\\text{m}$</tex> are achieved than our previous 3 stacked GeSn {001} nanosheets. Record high <tex>$\\text{I}_{\\text{ON}}$</tex> of <tex>$19.3\\mu \\text{A}$</tex> per stack at <tex>$\\text{V}_{\\text{OV}}=\\text{V}_{DS}=-0.5\\text{V}$</tex> and record <tex>$\\text{G}_{\\text{m}}$</tex> of <tex>$50.2\\mu\\text{S}$</tex> per stack at <tex>$\\text{V}_{\\text{DS}}=-0.5\\text{V}$</tex> among all GeSn FinFETs and GAAFETs are achieved. The <tex>$\\text{SS}_{\\text{lin}}$</tex> as low as S4mV/dec is also obtained, 22% reduction than our previous work.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"1 1","pages":"T180-T181"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First Vertically Stacked, Compressively Strained, and Triangular Ge0.91Sn0.09pGAAFETs with High $\\\\mathbf{I_{ON}}$ of $\\\\mathbf{19.3}\\\\mu \\\\mathbf{A}\\\\ \\\\mathbf{at}\\\\ \\\\mathbf{V_{OV}}=\\\\mathbf{V}_{\\\\mathbf{DS}}=\\\\mathbf{-0.5V},\\\\ \\\\mathbf{G}_{\\\\mathbf{m}}$ of $\\\\mathbf{50.2}\\\\mu \\\\mathbf{S}$ at $\\\\mathbf{V_{DS}}=\\\\mat\",\"authors\":\"Yu-Shiang Huang, Hung-Yu Ye, Fang-Liang Lu, Yi-Chun Liu, Chien-Te Tu, Chung-yi Lin, Shih-Ya Lin, Sun-Rang Jan, C. W. Liu\",\"doi\":\"10.23919/VLSIT.2019.8776550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The natural etching stop on {111} facets yields the small dangling bond density and roughness, enabling low SS and high <tex>$\\\\text{I}_{\\\\text{ON}}$</tex> on {111} sidewalls of the GAA channels. In addition, the <tex>$\\\\sim 2\\\\%$</tex> uniaxial compressive strain and <tex>$[\\\\text{Sn}]=9\\\\%$</tex> in the channel can reduce the hole effective mass. As a result, 50% improvement of <tex>$\\\\text{I}_{\\\\text{ON}}= 120\\\\mu \\\\text{A}/\\\\mu\\\\text{m}$</tex> (perimeter), and 71% improvement of <tex>$\\\\text{G}_{\\\\text{m}}=312\\\\mu \\\\text{S}/\\\\mu\\\\text{m}$</tex> are achieved than our previous 3 stacked GeSn {001} nanosheets. Record high <tex>$\\\\text{I}_{\\\\text{ON}}$</tex> of <tex>$19.3\\\\mu \\\\text{A}$</tex> per stack at <tex>$\\\\text{V}_{\\\\text{OV}}=\\\\text{V}_{DS}=-0.5\\\\text{V}$</tex> and record <tex>$\\\\text{G}_{\\\\text{m}}$</tex> of <tex>$50.2\\\\mu\\\\text{S}$</tex> per stack at <tex>$\\\\text{V}_{\\\\text{DS}}=-0.5\\\\text{V}$</tex> among all GeSn FinFETs and GAAFETs are achieved. The <tex>$\\\\text{SS}_{\\\\text{lin}}$</tex> as low as S4mV/dec is also obtained, 22% reduction than our previous work.\",\"PeriodicalId\":6752,\"journal\":{\"name\":\"2019 Symposium on VLSI Technology\",\"volume\":\"1 1\",\"pages\":\"T180-T181\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIT.2019.8776550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

111{个刻面上的自然蚀刻停止产生小的悬垂键密度和粗糙度,从而在GAA通道的}111个侧壁上实现低SS和高$\text{I}_{\text{ON}}$。此外,通道内的{}$\sim 2\%$单轴压缩应变和$[\text{Sn}]=9\%$可以降低孔洞的有效质量。结果是,50% improvement of $\text{I}_{\text{ON}}= 120\mu \text{A}/\mu\text{m}$ (perimeter), and 71% improvement of $\text{G}_{\text{m}}=312\mu \text{S}/\mu\text{m}$ are achieved than our previous 3 stacked GeSn {001} nanosheets. Record high $\text{I}_{\text{ON}}$ of $19.3\mu \text{A}$ per stack at $\text{V}_{\text{OV}}=\text{V}_{DS}=-0.5\text{V}$ and record $\text{G}_{\text{m}}$ of $50.2\mu\text{S}$ per stack at $\text{V}_{\text{DS}}=-0.5\text{V}$ among all GeSn FinFETs and GAAFETs are achieved. The $\text{SS}_{\text{lin}}$ as low as S4mV/dec is also obtained, 22% reduction than our previous work.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First Vertically Stacked, Compressively Strained, and Triangular Ge0.91Sn0.09pGAAFETs with High $\mathbf{I_{ON}}$ of $\mathbf{19.3}\mu \mathbf{A}\ \mathbf{at}\ \mathbf{V_{OV}}=\mathbf{V}_{\mathbf{DS}}=\mathbf{-0.5V},\ \mathbf{G}_{\mathbf{m}}$ of $\mathbf{50.2}\mu \mathbf{S}$ at $\mathbf{V_{DS}}=\mat
The natural etching stop on {111} facets yields the small dangling bond density and roughness, enabling low SS and high $\text{I}_{\text{ON}}$ on {111} sidewalls of the GAA channels. In addition, the $\sim 2\%$ uniaxial compressive strain and $[\text{Sn}]=9\%$ in the channel can reduce the hole effective mass. As a result, 50% improvement of $\text{I}_{\text{ON}}= 120\mu \text{A}/\mu\text{m}$ (perimeter), and 71% improvement of $\text{G}_{\text{m}}=312\mu \text{S}/\mu\text{m}$ are achieved than our previous 3 stacked GeSn {001} nanosheets. Record high $\text{I}_{\text{ON}}$ of $19.3\mu \text{A}$ per stack at $\text{V}_{\text{OV}}=\text{V}_{DS}=-0.5\text{V}$ and record $\text{G}_{\text{m}}$ of $50.2\mu\text{S}$ per stack at $\text{V}_{\text{DS}}=-0.5\text{V}$ among all GeSn FinFETs and GAAFETs are achieved. The $\text{SS}_{\text{lin}}$ as low as S4mV/dec is also obtained, 22% reduction than our previous work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Economics of semiconductor scaling - a cost analysis for advanced technology node Transient Negative Capacitance as Cause of Reverse Drain-induced Barrier Lowering and Negative Differential Resistance in Ferroelectric FETs Confined PCM-based Analog Synaptic Devices offering Low Resistance-drift and 1000 Programmable States for Deep Learning High Performance Heterogeneous Integration on Fan-out RDL Interposer Technology challenges and enablers to extend Cu metallization to beyond 7 nm node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1