基于28纳米嵌入式闪存工艺的高速超低功耗物联网单芯片(MCU +连接芯片)

Changmin Jeon, Jongsung Woo, Kyongsik Yeom, Minji Seo, Eunmi Hong, Youngcheon Jeong, Sangjin Lee, Hongkook Min, DalHwan Kim, Hyun-Yong Lee, Soomin Cho, Myeonghee Oh, Jisung Kim, Hyosang Lee, Jinchul Park, Cheol Kim, Hyukjun Sung, Se-Joon Yoon, Joonsuk Kim, Yong Kyu Lee, K. Park, G. Jeong, J. Yoon, E. Jung
{"title":"基于28纳米嵌入式闪存工艺的高速超低功耗物联网单芯片(MCU +连接芯片)","authors":"Changmin Jeon, Jongsung Woo, Kyongsik Yeom, Minji Seo, Eunmi Hong, Youngcheon Jeong, Sangjin Lee, Hongkook Min, DalHwan Kim, Hyun-Yong Lee, Soomin Cho, Myeonghee Oh, Jisung Kim, Hyosang Lee, Jinchul Park, Cheol Kim, Hyukjun Sung, Se-Joon Yoon, Joonsuk Kim, Yong Kyu Lee, K. Park, G. Jeong, J. Yoon, E. Jung","doi":"10.23919/VLSIT.2019.8776557","DOIUrl":null,"url":null,"abstract":"Based on robust 28-nm embedded flash (eFlash) process, IoT One-chip for high-speed and low power applications which MCU-chip (10Mb eFlash) and connectivity-chip (BLE/Zigbee) are integrated for the first time. By introducing new devices on 28-nm low-power eFlash process, high-speed ($> 40\\text{MHz}$ random read), ultra-low power $(< 3\\text{uA}$ sleep mode current, 10/13mA RF current at $\\text{Tx}/\\text{Rx}$ mode) and robust reliability $(-40\\sim 125^{\\text{o}}\\text{C}$ stable operation, $100\\text{K}$ cycle endurance, 150C/RT retention up to 200K hours) are achieved. LDD-first IO transistor with low Vth (~0.5V) for low-Vdd (~1.0V) operation [1] and ultra-low leakage (ULL) SRAM bit-cell (0.1x vs. normal) supporting low sleep mode chip current are applied to extend battery life-time. Stable endurance and high (/low)-temperature retention after cycling stress are achieved by robust split-gate type eFlash cell.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"31 1","pages":"T114-T115"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-speed and Ultra-low Power IoT One-chip (MCU + Connectivity-chip) on a Robust 28-nm Embedded Flash Process\",\"authors\":\"Changmin Jeon, Jongsung Woo, Kyongsik Yeom, Minji Seo, Eunmi Hong, Youngcheon Jeong, Sangjin Lee, Hongkook Min, DalHwan Kim, Hyun-Yong Lee, Soomin Cho, Myeonghee Oh, Jisung Kim, Hyosang Lee, Jinchul Park, Cheol Kim, Hyukjun Sung, Se-Joon Yoon, Joonsuk Kim, Yong Kyu Lee, K. Park, G. Jeong, J. Yoon, E. Jung\",\"doi\":\"10.23919/VLSIT.2019.8776557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on robust 28-nm embedded flash (eFlash) process, IoT One-chip for high-speed and low power applications which MCU-chip (10Mb eFlash) and connectivity-chip (BLE/Zigbee) are integrated for the first time. By introducing new devices on 28-nm low-power eFlash process, high-speed ($> 40\\\\text{MHz}$ random read), ultra-low power $(< 3\\\\text{uA}$ sleep mode current, 10/13mA RF current at $\\\\text{Tx}/\\\\text{Rx}$ mode) and robust reliability $(-40\\\\sim 125^{\\\\text{o}}\\\\text{C}$ stable operation, $100\\\\text{K}$ cycle endurance, 150C/RT retention up to 200K hours) are achieved. LDD-first IO transistor with low Vth (~0.5V) for low-Vdd (~1.0V) operation [1] and ultra-low leakage (ULL) SRAM bit-cell (0.1x vs. normal) supporting low sleep mode chip current are applied to extend battery life-time. Stable endurance and high (/low)-temperature retention after cycling stress are achieved by robust split-gate type eFlash cell.\",\"PeriodicalId\":6752,\"journal\":{\"name\":\"2019 Symposium on VLSI Technology\",\"volume\":\"31 1\",\"pages\":\"T114-T115\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIT.2019.8776557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于强大的28纳米嵌入式闪存(eFlash)工艺,首次集成了mcu芯片(10Mb eFlash)和连接芯片(BLE/Zigbee),用于高速低功耗应用的物联网单芯片。通过引入28纳米低功耗eFlash工艺的新器件,实现了高速($> 40\text{MHz}$随机读取),超低功耗$(< 3\text{uA}$睡眠模式电流,$\text{Tx}/\text{Rx}$模式下的10/13mA RF电流)和稳健可靠性$(-40\sim 125^{\text{o}}\text{C}$稳定运行,$100\text{K}$循环续航时间,150C/RT保持时间长达200K小时)。采用低Vth (~0.5V)低vdd (~1.0V)工作[1]的LDD-first IO晶体管和超低漏损(ULL) SRAM位单元(0.1倍),支持低睡眠模式芯片电流,延长电池寿命。稳定的耐久性和高(/低)温度保持循环应力后实现了稳健的分栅型eFlash电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-speed and Ultra-low Power IoT One-chip (MCU + Connectivity-chip) on a Robust 28-nm Embedded Flash Process
Based on robust 28-nm embedded flash (eFlash) process, IoT One-chip for high-speed and low power applications which MCU-chip (10Mb eFlash) and connectivity-chip (BLE/Zigbee) are integrated for the first time. By introducing new devices on 28-nm low-power eFlash process, high-speed ($> 40\text{MHz}$ random read), ultra-low power $(< 3\text{uA}$ sleep mode current, 10/13mA RF current at $\text{Tx}/\text{Rx}$ mode) and robust reliability $(-40\sim 125^{\text{o}}\text{C}$ stable operation, $100\text{K}$ cycle endurance, 150C/RT retention up to 200K hours) are achieved. LDD-first IO transistor with low Vth (~0.5V) for low-Vdd (~1.0V) operation [1] and ultra-low leakage (ULL) SRAM bit-cell (0.1x vs. normal) supporting low sleep mode chip current are applied to extend battery life-time. Stable endurance and high (/low)-temperature retention after cycling stress are achieved by robust split-gate type eFlash cell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Economics of semiconductor scaling - a cost analysis for advanced technology node Transient Negative Capacitance as Cause of Reverse Drain-induced Barrier Lowering and Negative Differential Resistance in Ferroelectric FETs Confined PCM-based Analog Synaptic Devices offering Low Resistance-drift and 1000 Programmable States for Deep Learning High Performance Heterogeneous Integration on Fan-out RDL Interposer Technology challenges and enablers to extend Cu metallization to beyond 7 nm node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1