Coincidence anomaly detection for unsupervised locating of edge localized modes in the DIII-D tokamak dataset

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Science and Technology Pub Date : 2024-08-20 DOI:10.1088/2632-2153/ad6be7
Finn H O’Shea, Semin Joung, David R Smith, Daniel Ratner, Ryan Coffee
{"title":"Coincidence anomaly detection for unsupervised locating of edge localized modes in the DIII-D tokamak dataset","authors":"Finn H O’Shea, Semin Joung, David R Smith, Daniel Ratner, Ryan Coffee","doi":"10.1088/2632-2153/ad6be7","DOIUrl":null,"url":null,"abstract":"Using supervised learning to train a machine learning model to predict an on-coming edge localized mode (ELM) requires a large number of labeled samples. Creating an appropriate data set from the very large database of discharges at a long-running tokamak, such as DIII-D, would be a very time-consuming process for a human. Considering this need and difficulty, we use coincidence anomaly detection, an unsupervised learning technique, to train an ELM-identifier to identify and label ELMs in the DIII-D discharge database. This ELM-identifier shows, simultaneously, a precision of 0.68 and a recall of 0.63 (AUC is 0.73) on identifying ELMs in example time series pulled from thousands of discharges spanning five years. In a test set of 50 discharges, the algorithm finds over 26 thousand ELM candidates, more than 5 times the existing catalog of ELMs labeled by humans.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad6be7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Using supervised learning to train a machine learning model to predict an on-coming edge localized mode (ELM) requires a large number of labeled samples. Creating an appropriate data set from the very large database of discharges at a long-running tokamak, such as DIII-D, would be a very time-consuming process for a human. Considering this need and difficulty, we use coincidence anomaly detection, an unsupervised learning technique, to train an ELM-identifier to identify and label ELMs in the DIII-D discharge database. This ELM-identifier shows, simultaneously, a precision of 0.68 and a recall of 0.63 (AUC is 0.73) on identifying ELMs in example time series pulled from thousands of discharges spanning five years. In a test set of 50 discharges, the algorithm finds over 26 thousand ELM candidates, more than 5 times the existing catalog of ELMs labeled by humans.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 DIII-D 托卡马克数据集中对边缘定位模式进行无监督定位的重合异常检测
使用监督学习来训练机器学习模型,以预测即将发生的边缘局部模式(ELM),需要大量的标记样本。从 DIII-D 等长期运行的托卡马克放电的庞大数据库中创建一个适当的数据集,对人类来说是一个非常耗时的过程。考虑到这一需求和困难,我们使用了巧合异常检测(一种无监督学习技术)来训练 ELM 识别器,以识别和标记 DIII-D 放电数据库中的 ELM。该 ELM 识别器同时显示,在从跨越五年的数千个出院数据中提取的示例时间序列中识别 ELM 的精确度为 0.68,召回率为 0.63(AUC 为 0.73)。在一个包含 50 个出院数据的测试集中,该算法发现了超过 2.6 万个 ELM 候选,是现有人工标注 ELM 目录的 5 倍多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
期刊最新文献
Quality assurance for online adaptive radiotherapy: a secondary dose verification model with geometry-encoded U-Net. Optimizing ZX-diagrams with deep reinforcement learning DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data Equivariant tensor network potentials Masked particle modeling on sets: towards self-supervised high energy physics foundation models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1