{"title":"Spiro-OMeTAD Anchoring perovskite for gradual homojunction in stable perovskite solar cells","authors":"","doi":"10.1016/j.sse.2024.109003","DOIUrl":null,"url":null,"abstract":"<div><div>The role of interface energetics-modification in interface-defect passivation and optimal interface energy-level matching is assumed to be a crucial aspect. Enhancing the performance and durability of perovskite solar cells (PSCs) can be achieved through this strategy. Here, spiro-OMeTAD [2,2′,7,7′-tetrakis (N, N-di-p-methoxyphenylamine)-9,9′-spirobifluorene] has been pipetted onto the spinning perovskite precursor film via a chlorobenzene anti-solvent strategy. It is found that spiro-OMeTAD serves as not only the filler at grain boundaries, but also the coverage on perovskite’s grain, and then forms the gradual homojunction interface from perovskite to spiro-OMeTAD hole transport layer, which can make spiro-OMeTAD anchor perovskite via the reaction between Pb<sup>2+</sup> and C-O groups to decrease the interface barrier and obtain the optimal interface energy-level match between them for hole −migration and −collection. Moreover, these fillers or coverages can prevent moisture invading perovskite. Consequently, the counterpart PSC achieves a champion efficiency of 24.46 %, and has retained more than 88 % of the initial efficiency after 224 days of storage.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124001527","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The role of interface energetics-modification in interface-defect passivation and optimal interface energy-level matching is assumed to be a crucial aspect. Enhancing the performance and durability of perovskite solar cells (PSCs) can be achieved through this strategy. Here, spiro-OMeTAD [2,2′,7,7′-tetrakis (N, N-di-p-methoxyphenylamine)-9,9′-spirobifluorene] has been pipetted onto the spinning perovskite precursor film via a chlorobenzene anti-solvent strategy. It is found that spiro-OMeTAD serves as not only the filler at grain boundaries, but also the coverage on perovskite’s grain, and then forms the gradual homojunction interface from perovskite to spiro-OMeTAD hole transport layer, which can make spiro-OMeTAD anchor perovskite via the reaction between Pb2+ and C-O groups to decrease the interface barrier and obtain the optimal interface energy-level match between them for hole −migration and −collection. Moreover, these fillers or coverages can prevent moisture invading perovskite. Consequently, the counterpart PSC achieves a champion efficiency of 24.46 %, and has retained more than 88 % of the initial efficiency after 224 days of storage.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.