MethylTree: exploring epimutations for accurate and non-invasive lineage tracing

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Methods Pub Date : 2025-01-16 DOI:10.1038/s41592-024-02568-0
{"title":"MethylTree: exploring epimutations for accurate and non-invasive lineage tracing","authors":"","doi":"10.1038/s41592-024-02568-0","DOIUrl":null,"url":null,"abstract":"Non-invasive lineage tracing in humans relies on rare somatic mutations, which have limited throughput and temporal resolution. We developed a computational method, ‘MethylTree’, which uses epimutations on DNA methylation to accurately infer lineages across cell types, developmental stages and species, providing a superior alternative for non-invasive lineage tracing in humans and other organisms.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 3","pages":"463-464"},"PeriodicalIF":36.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-024-02568-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Non-invasive lineage tracing in humans relies on rare somatic mutations, which have limited throughput and temporal resolution. We developed a computational method, ‘MethylTree’, which uses epimutations on DNA methylation to accurately infer lineages across cell types, developmental stages and species, providing a superior alternative for non-invasive lineage tracing in humans and other organisms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甲基树:探索精确和非侵入性谱系追踪的epimations。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Deep Learning Method Based on Gated Recurrent Unit and Variational Mode Decomposition for Short-Term Wind Power Interval Prediction
IF 10.4 1区 计算机科学IEEE transactions on neural networks and learning systemsPub Date : 2019-11-13 DOI: 10.1109/TNNLS.2019.2946414
Ruoheng Wang;Chaoshun Li;Wenlong Fu;Geng Tang
Ultra-Short-Term Wind Power Prediction Based on Bidirectional Gated Recurrent Unit and Transfer Learning
IF 3.4 4区 工程技术Frontiers in Energy ResearchPub Date : 2021-12-17 DOI: 10.3389/fenrg.2021.808116
Wenjin Chen, Weiwen Qi, Yu Li, Jun Zhang, Feng Zhu, Dongfan Xie, Wei-kang Ru, Gang Luo, Meiya Song, Fei Tang
A robust auto encoder-gated recurrent unit (AE-GRU) based deep learning approach for short term solar power forecasting
IF 3.1 3区 物理与天体物理OptikPub Date : 2022-02-01 DOI: 10.1016/j.ijleo.2021.168515
Amit Rai , Ashish Shrivastava , Kartick C. Jana
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
期刊最新文献
Simultaneous single-cell DNA damage profiling and RNA sequencing by Paired-Damage-seq. Single-cell parallel analysis of DNA damage and transcriptome reveals selective genome vulnerability. Connectivity of single neurons classifies cell subtypes in mouse brains. Comparing chromatin contact maps at scale: methods and insights. Marrying mechanics with spatial transcriptomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1