Tumor microenvironment: obstacles and opportunities for T-cell based tumor immunotherapies.

IF 4.1 2区 医学 Q2 CELL BIOLOGY Molecular Cancer Research Pub Date : 2025-02-03 DOI:10.1158/1541-7786.MCR-24-0747
Miao-Miao Hu, Ying Zhao, Nan Zhang, Fang-Yuan Gong, Wei Zhang, Chun-Sheng Dong, Jian-Feng Dai, Jun Wang
{"title":"Tumor microenvironment: obstacles and opportunities for T-cell based tumor immunotherapies.","authors":"Miao-Miao Hu, Ying Zhao, Nan Zhang, Fang-Yuan Gong, Wei Zhang, Chun-Sheng Dong, Jian-Feng Dai, Jun Wang","doi":"10.1158/1541-7786.MCR-24-0747","DOIUrl":null,"url":null,"abstract":"<p><p>The complex composition and dynamic change of the tumor microenvironment (TME), mainly consisting of tumor cells, immune cells, stromal cells and extracellular components, significantly impedes the effector function of cytotoxic T cells (CTLs) and thus represents a major obstacle for tumor immunotherapies. In this review, we summarize and discuss the impacts and underlying mechanisms of major elements in the TME (different cell types, extracellular matrix, nutrients and metabolites, etc.) on the infiltration, survival and effector functions of T cells, mainly CD8+ CTLs. Moreover, we also highlight recent advances that may potentiate endogenous anti-tumor immunity and improve the efficacy of T-cell based immunotherapies in cancer patients by manipulating components inside/outside of the TME. A deeper understanding of the effects and action mechanisms of TME components on the tumor-eradicating ability of CTLs may pave the way for discovering new targets to augment endogenous anti-tumor immunity and for designing combinational therapeutic regimens to enhance the efficacy of tumor immunotherapies in clinic.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-24-0747","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The complex composition and dynamic change of the tumor microenvironment (TME), mainly consisting of tumor cells, immune cells, stromal cells and extracellular components, significantly impedes the effector function of cytotoxic T cells (CTLs) and thus represents a major obstacle for tumor immunotherapies. In this review, we summarize and discuss the impacts and underlying mechanisms of major elements in the TME (different cell types, extracellular matrix, nutrients and metabolites, etc.) on the infiltration, survival and effector functions of T cells, mainly CD8+ CTLs. Moreover, we also highlight recent advances that may potentiate endogenous anti-tumor immunity and improve the efficacy of T-cell based immunotherapies in cancer patients by manipulating components inside/outside of the TME. A deeper understanding of the effects and action mechanisms of TME components on the tumor-eradicating ability of CTLs may pave the way for discovering new targets to augment endogenous anti-tumor immunity and for designing combinational therapeutic regimens to enhance the efficacy of tumor immunotherapies in clinic.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Inducible clindamycin and methicillin resistant Staphylococcus aureus in a tertiary care hospital, Kathmandu, Nepal.
IF 3.7 3区 材料科学ACS Applied Electronic MaterialsPub Date : 2017-07-11 DOI: 10.1186/s12879-017-2584-5
R P Adhikari, S Shrestha, A Barakoti, R Amatya
Nasal Carriage of Methicillin-Resistant Staphylococcus aureus among Healthcare Workers in a Tertiary Care Hospital, Kathmandu, Nepal.
IF 3.4 ACS Applied Bio MaterialsPub Date : 2021-08-10 DOI: 10.1155/2021/8825746
Nisha Giri, Sujina Maharjan, Tika Bahadur Thapa, Sushant Pokhrel, Govardhan Joshi, Ojaswee Shrestha, Nabina Shrestha, Basista Prasad Rijal
Nasal carriage of biofilm producing methicillin resistant Staphylococcus aureus among healthcare workers in a tertiary care hospital, Kathmandu, Nepal
IF 8.4 2区 医学International Journal of Infectious DiseasesPub Date : 2020-12-01 DOI: 10.1016/J.IJID.2020.09.730
B. Rijal, N. Giri, S. Maharjan, O. Shrestha, T. B. Thapa, N. Shrestha
来源期刊
Molecular Cancer Research
Molecular Cancer Research 医学-细胞生物学
CiteScore
9.90
自引率
0.00%
发文量
280
审稿时长
4-8 weeks
期刊介绍: Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.
期刊最新文献
Single-cell and spatial transcriptomics reveal a tumor-associated macrophage subpopulation that mediates prostate cancer progression and metastasis. Empty spiracles homeobox 2 (EMX2) transcription factor functions as a tumor suppressor in renal cell carcinoma by targeting CADM1. KSR2 promotes self-renewal and clonogenicity of small-cell lung carcinoma. ANGEL2 modulates wildtype TP53 translation and doxorubicin chemosensitivity in colon cancer. Insulin Resistance Increases TNBC Aggressiveness and Brain Metastasis via Adipocyte-derived Exosomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1