ATAD2 Drives Prostate Cancer Progression to Metastasis.

IF 4.1 2区 医学 Q2 CELL BIOLOGY Molecular Cancer Research Pub Date : 2025-02-05 DOI:10.1158/1541-7786.MCR-24-0544
Anindita Dutta, Antonio Rodriguez-Calero, Kacey Ronaldson-Bouchard, Anne Offermann, Daoud Rahman, Twinkle Bapuji Vhatkar, Dan Hasson, Mohammed Alshalalfa, Elai Davicioni, R Jeffrey Karnes, Mark A Rubin, Gordana Vunjak-Novakovic, Cory Abate-Shen, Juan Martin Arriaga
{"title":"ATAD2 Drives Prostate Cancer Progression to Metastasis.","authors":"Anindita Dutta, Antonio Rodriguez-Calero, Kacey Ronaldson-Bouchard, Anne Offermann, Daoud Rahman, Twinkle Bapuji Vhatkar, Dan Hasson, Mohammed Alshalalfa, Elai Davicioni, R Jeffrey Karnes, Mark A Rubin, Gordana Vunjak-Novakovic, Cory Abate-Shen, Juan Martin Arriaga","doi":"10.1158/1541-7786.MCR-24-0544","DOIUrl":null,"url":null,"abstract":"<p><p>Metastasis accounts for the overwhelming majority of cancer deaths. In prostate cancer and many other solid tumors, progression to metastasis is associated with drastically reduced survival outcomes, yet the mechanisms behind this progression remain largely unknown. ATAD2 (ATPase family AAA domain containing 2) is an epigenetic reader of acetylated histones that is overexpressed in multiple cancer types and usually associated with poor patient outcomes. However, the functional role of ATAD2 in cancer progression and metastasis has been relatively understudied. Here we employ genetically engineered mouse models of prostate cancer bone metastasis, as well as multiple independent human cohorts, to show that ATAD2 is highly enriched in bone metastasis compared to primary tumors and significantly associated with the development of metastasis. We show that ATAD2 expression is associated with MYC pathway activation in patient datasets and that, at least in a subset of tumors, MYC and ATAD2 can regulate each other's expression. Using functional studies on mouse bone metastatic cell lines and innovative organ-on-a-chip bone invasion assays, we establish a functional role for ATAD2 inhibition in diminishing prostate cancer metastasis and growth in bone. Implications: Our study highlights ATAD2 as a driver of prostate cancer progression and metastasis and suggests it may constitute a promising novel therapeutic target.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-24-0544","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metastasis accounts for the overwhelming majority of cancer deaths. In prostate cancer and many other solid tumors, progression to metastasis is associated with drastically reduced survival outcomes, yet the mechanisms behind this progression remain largely unknown. ATAD2 (ATPase family AAA domain containing 2) is an epigenetic reader of acetylated histones that is overexpressed in multiple cancer types and usually associated with poor patient outcomes. However, the functional role of ATAD2 in cancer progression and metastasis has been relatively understudied. Here we employ genetically engineered mouse models of prostate cancer bone metastasis, as well as multiple independent human cohorts, to show that ATAD2 is highly enriched in bone metastasis compared to primary tumors and significantly associated with the development of metastasis. We show that ATAD2 expression is associated with MYC pathway activation in patient datasets and that, at least in a subset of tumors, MYC and ATAD2 can regulate each other's expression. Using functional studies on mouse bone metastatic cell lines and innovative organ-on-a-chip bone invasion assays, we establish a functional role for ATAD2 inhibition in diminishing prostate cancer metastasis and growth in bone. Implications: Our study highlights ATAD2 as a driver of prostate cancer progression and metastasis and suggests it may constitute a promising novel therapeutic target.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Inducible clindamycin and methicillin resistant Staphylococcus aureus in a tertiary care hospital, Kathmandu, Nepal.
IF 3.7 3区 材料科学ACS Applied Electronic MaterialsPub Date : 2017-07-11 DOI: 10.1186/s12879-017-2584-5
R P Adhikari, S Shrestha, A Barakoti, R Amatya
Nasal Carriage of Methicillin-Resistant Staphylococcus aureus among Healthcare Workers in a Tertiary Care Hospital, Kathmandu, Nepal.
IF 3.4 ACS Applied Bio MaterialsPub Date : 2021-08-10 DOI: 10.1155/2021/8825746
Nisha Giri, Sujina Maharjan, Tika Bahadur Thapa, Sushant Pokhrel, Govardhan Joshi, Ojaswee Shrestha, Nabina Shrestha, Basista Prasad Rijal
Nasal carriage of biofilm producing methicillin resistant Staphylococcus aureus among healthcare workers in a tertiary care hospital, Kathmandu, Nepal
IF 8.4 2区 医学International Journal of Infectious DiseasesPub Date : 2020-12-01 DOI: 10.1016/J.IJID.2020.09.730
B. Rijal, N. Giri, S. Maharjan, O. Shrestha, T. B. Thapa, N. Shrestha
来源期刊
Molecular Cancer Research
Molecular Cancer Research 医学-细胞生物学
CiteScore
9.90
自引率
0.00%
发文量
280
审稿时长
4-8 weeks
期刊介绍: Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.
期刊最新文献
Single-cell and spatial transcriptomics reveal a tumor-associated macrophage subpopulation that mediates prostate cancer progression and metastasis. Empty spiracles homeobox 2 (EMX2) transcription factor functions as a tumor suppressor in renal cell carcinoma by targeting CADM1. KSR2 promotes self-renewal and clonogenicity of small-cell lung carcinoma. ANGEL2 modulates wildtype TP53 translation and doxorubicin chemosensitivity in colon cancer. Insulin Resistance Increases TNBC Aggressiveness and Brain Metastasis via Adipocyte-derived Exosomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1