A High-Affinity and Selective DNA Aptamer for the N-Linked C8-Deoxyguanosine Adduct Produced by the Arylamine Carcinogen 4-Aminobiphenyl.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Chemical Research in Toxicology Pub Date : 2025-02-17 Epub Date: 2025-02-05 DOI:10.1021/acs.chemrestox.4c00496
Yijing Chen, Ryan E Johnson, Richard A Manderville, Juewen Liu
{"title":"A High-Affinity and Selective DNA Aptamer for the <i>N</i>-Linked C8-Deoxyguanosine Adduct Produced by the Arylamine Carcinogen 4-Aminobiphenyl.","authors":"Yijing Chen, Ryan E Johnson, Richard A Manderville, Juewen Liu","doi":"10.1021/acs.chemrestox.4c00496","DOIUrl":null,"url":null,"abstract":"<p><p>4-Aminobiphenyl (4-ABP) is a known human carcinogen that is implicated in the development of bladder cancers in smokers. The amine substituent undergoes bioactivation to generate nitrenium ions capable of covalently modifying DNA nucleobases. The primary adduct of 4-ABP, <i>N</i>-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP), is a bulky <i>N</i>-linked C8-dG adduct that serves as a biomarker for assessing the cancer risk associated with aromatic amine exposure. In this study, the capture-SELEX method was utilized to isolate DNA aptamers for dG-C8-ABP with high affinity and specificity. Using thioflavin T fluorescence spectroscopy and isothermal titration calorimetry, the parent aptamer PdG-1 has a <i>K</i><sub>d</sub> value below 100 nM and over 50-fold selectivity for dG-C8-ABP against competing analytes. A turn-on fluorescent sensor for dG-C8-ABP diagnostics, developed using a strand displacement assay, is also presented with a limit of detection of 68 nM. Our work represents the first selection of a DNA aptamer for a bulky DNA adduct produced by a known human carcinogen and sets the stage for the creation of ultrasensitive aptasensor platforms to meet the challenge of dG-C8-ABP detection in clinical settings.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"340-346"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00496","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

4-Aminobiphenyl (4-ABP) is a known human carcinogen that is implicated in the development of bladder cancers in smokers. The amine substituent undergoes bioactivation to generate nitrenium ions capable of covalently modifying DNA nucleobases. The primary adduct of 4-ABP, N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP), is a bulky N-linked C8-dG adduct that serves as a biomarker for assessing the cancer risk associated with aromatic amine exposure. In this study, the capture-SELEX method was utilized to isolate DNA aptamers for dG-C8-ABP with high affinity and specificity. Using thioflavin T fluorescence spectroscopy and isothermal titration calorimetry, the parent aptamer PdG-1 has a Kd value below 100 nM and over 50-fold selectivity for dG-C8-ABP against competing analytes. A turn-on fluorescent sensor for dG-C8-ABP diagnostics, developed using a strand displacement assay, is also presented with a limit of detection of 68 nM. Our work represents the first selection of a DNA aptamer for a bulky DNA adduct produced by a known human carcinogen and sets the stage for the creation of ultrasensitive aptasensor platforms to meet the challenge of dG-C8-ABP detection in clinical settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Assessing pesticide wet deposition risk within a small agricultural watershed in the Southeastern Coastal Plain (USA)
IF 9.8 1区 环境科学与生态学Science of the Total EnvironmentPub Date : 2017-02-15 DOI: 10.1016/j.scitotenv.2016.11.020
Thomas L. Potter, Alisa W. Coffin
Turkey Creek—A Case Study of Ecohydrology and Integrated Watershed Management in the Low-Gradient Atlantic Coastal Plain, USA
IF 0 水资源与保护(英文)Pub Date : 2015-07-17 DOI: 10.4236/JWARP.2015.710065
D. Amatya, T. Callahan, W. Hansen, C. Trettin, A. Radecki-Pawlik, P. Meire
Evaluating the SWAT Model for a Low-Gradient Forested Watershed in Coastal South Carolina
IF 1.5 4区 农林科学Transactions of the ASABEPub Date : 2011-01-01 DOI: 10.13031/2013.40671
D. Amatya, M. Jha
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
期刊最新文献
Deconjugation of Polychlorinated Biphenyl Sulfates to Hydroxylated PCBs by Anaerobically Cultured Mouse and Human Gut Microbiota. Quantification of Flavors, Volatile Organic Compounds, Tobacco Markers, and Tobacco-Specific Nitrosamines in Heated Tobacco Products and Their Mainstream Aerosol. Nanoparticle-Mediated Embryotoxicity: Mechanisms of Chemical Toxicity and Implications for Biological Development. Systematic Investigation of CYP3A4 Using Side-by-Side Comparisons of Apo, Active Site, and Allosteric-Bound States. Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1