Anoop A. Nayak , P.N. Vinayachandran , Jenson V. George
{"title":"Arabian Sea high salinity core supplies oxygen to the Bay of Bengal","authors":"Anoop A. Nayak , P.N. Vinayachandran , Jenson V. George","doi":"10.1016/j.dsr2.2025.105477","DOIUrl":null,"url":null,"abstract":"<div><div>The oxygen minimum zone (OMZ) in the Bay of Bengal (BoB) is unique owing to its curious capability to maintain steady dissolved oxygen (DO) levels. In this study, we identify a process by which the oxygen is supplied to the BoB, using DO and microstructure profiles in the southern BoB and Argo profiles over the entire basin. A high salinity core (HSC) rich in DO is advected by the Summer Monsoon Current (SMC) into BoB. Vertical mixing driven by turbulent processes recharge DO concentration in thermocline above OMZ. Salt-fingering processes were active below the HSC and were observed to enhance the vertical mixing. HSC identified in the Argo data, also rich in oxygen, can be traced up to 19° N, confirming that HSC is a source of DO and potentially prevents OMZ from moving to the denitrification regime. This might be a potential oxygen source for the BoB OMZ in changing climate conditions.</div></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"221 ","pages":"Article 105477"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-sea Research Part Ii-topical Studies in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967064525000268","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The oxygen minimum zone (OMZ) in the Bay of Bengal (BoB) is unique owing to its curious capability to maintain steady dissolved oxygen (DO) levels. In this study, we identify a process by which the oxygen is supplied to the BoB, using DO and microstructure profiles in the southern BoB and Argo profiles over the entire basin. A high salinity core (HSC) rich in DO is advected by the Summer Monsoon Current (SMC) into BoB. Vertical mixing driven by turbulent processes recharge DO concentration in thermocline above OMZ. Salt-fingering processes were active below the HSC and were observed to enhance the vertical mixing. HSC identified in the Argo data, also rich in oxygen, can be traced up to 19° N, confirming that HSC is a source of DO and potentially prevents OMZ from moving to the denitrification regime. This might be a potential oxygen source for the BoB OMZ in changing climate conditions.
期刊介绍:
Deep-Sea Research Part II: Topical Studies in Oceanography publishes topical issues from the many international and interdisciplinary projects which are undertaken in oceanography. Besides these special issues from projects, the journal publishes collections of papers presented at conferences. The special issues regularly have electronic annexes of non-text material (numerical data, images, images, video, etc.) which are published with the special issues in ScienceDirect. Deep-Sea Research Part II was split off as a separate journal devoted to topical issues in 1993. Its companion journal Deep-Sea Research Part I: Oceanographic Research Papers, publishes the regular research papers in this area.