Phung Van Minh, Le Minh Thai, Nguyen Thai Dung, Abdelouahed Tounsi, Nguyen Thi Cam Nhung, Do Van Thom
{"title":"An overview of the flexoelectric phenomenon, potential applications, and proposals for further research directions","authors":"Phung Van Minh, Le Minh Thai, Nguyen Thai Dung, Abdelouahed Tounsi, Nguyen Thi Cam Nhung, Do Van Thom","doi":"10.1007/s10999-023-09678-1","DOIUrl":null,"url":null,"abstract":"<div><p>Materials are of prime importance for designing and manufacturing structures and components in numerous industries, including aviation, aerospace, military, automotive, machine construction, electronics, and telecommunications, among others. Throughout the industrial transformations in human history, it is evident that the materials industry had the most significant impact on scientific and technological progress. In recent years, the Fourth Industrial Revolution has altered the infrastructure and character of production in a number of global industries. Materials science has been contributing a significant and essential role in the global competitiveness of all industries, particularly those utilizing electronic domains such as semiconductors, microprocessors, and sensors for industrial and social applications. Consequently, nanoscale materials with exceptional properties have garnered the interest of numerous researchers. One of these phenomena in dielectric materials is flexoelectricity. This phenomenon was discovered in the 1950s of the previous century, but it wasn't until the early 2000s, when materials science and other disciplines flourished, that many researchers began to focus on it. In recent years, the applicability of flexoelectric materials has increased across all disciplines. In addition, as a consequence of the importance of novel electrical materials to the flexoelectric effect, the research problem for this material broadly and the analysis of the mechanical responses of flexoelectric structures are being investigated and developed at a rapid rate. This paper provides an overview of the flexoelectric phenomenon, together with potential applications and recommendations for further study. The article’s content will serve as a valuable resource for scientists interested in dielectric materials with unique electromechanical effects, which are extensively used in contemporary electronic disciplines.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 4","pages":"903 - 925"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09678-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Materials are of prime importance for designing and manufacturing structures and components in numerous industries, including aviation, aerospace, military, automotive, machine construction, electronics, and telecommunications, among others. Throughout the industrial transformations in human history, it is evident that the materials industry had the most significant impact on scientific and technological progress. In recent years, the Fourth Industrial Revolution has altered the infrastructure and character of production in a number of global industries. Materials science has been contributing a significant and essential role in the global competitiveness of all industries, particularly those utilizing electronic domains such as semiconductors, microprocessors, and sensors for industrial and social applications. Consequently, nanoscale materials with exceptional properties have garnered the interest of numerous researchers. One of these phenomena in dielectric materials is flexoelectricity. This phenomenon was discovered in the 1950s of the previous century, but it wasn't until the early 2000s, when materials science and other disciplines flourished, that many researchers began to focus on it. In recent years, the applicability of flexoelectric materials has increased across all disciplines. In addition, as a consequence of the importance of novel electrical materials to the flexoelectric effect, the research problem for this material broadly and the analysis of the mechanical responses of flexoelectric structures are being investigated and developed at a rapid rate. This paper provides an overview of the flexoelectric phenomenon, together with potential applications and recommendations for further study. The article’s content will serve as a valuable resource for scientists interested in dielectric materials with unique electromechanical effects, which are extensively used in contemporary electronic disciplines.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.