基于异质集成技术的 MEMS 柔性保形水听器

IF 1.6 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Sensor Review Pub Date : 2024-04-30 DOI:10.1108/sr-01-2024-0032
Xiangkai Zhang, Renxin Wang, Wenping Cao, Guochang Liu, Haoyu Tan, Haoxuan Li, Jiaxing Wu, Guojun Zhang, Wendong Zhang
{"title":"基于异质集成技术的 MEMS 柔性保形水听器","authors":"Xiangkai Zhang, Renxin Wang, Wenping Cao, Guochang Liu, Haoyu Tan, Haoxuan Li, Jiaxing Wu, Guojun Zhang, Wendong Zhang","doi":"10.1108/sr-01-2024-0032","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Human-induced marine environmental noise, such as commercial shipping and seismic exploration, is concentrated in the low-frequency range. Meanwhile, low-frequency sound signals can achieve long-distance propagation in water. To meet the requirements of long-distance underwater detection and communication, this paper aims to propose an micro-electro-mechanical system (MEMS) flexible conformal hydrophone for low-frequency underwater acoustic signals. The substrate of the proposed hydrophone is polyimide, with silicon as the piezoresistive unit.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This paper proposes a MEMS heterojunction integration process for preparing flexible conformal hydrophones. In addition, sensors prepared based on this process are non-contact flexible sensors that can detect weak signals or small deformations.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The experimental results indicate that making devices with this process cannot only achieve heterogeneous integration of silicon film, metal wire and polyimide, but also allow for customized positions of the silicon film as needed. The success rate of silicon film transfer printing is over 95%. When a stress of 1 Pa is applied on the <em>x</em>-axis or <em>y</em>-axis, the maximum stress on Si as a pie-zoresistive material is above, and the average stress on the Si film is around.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The flexible conformal vector hydrophone prepared by heterogeneous integration technology provides ideas for underwater acoustic communication and signal acquisition of biomimetic flexible robotic fish.</p><!--/ Abstract__block -->","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MEMS flexible conformal hydrophone based on heterogeneous integration technology\",\"authors\":\"Xiangkai Zhang, Renxin Wang, Wenping Cao, Guochang Liu, Haoyu Tan, Haoxuan Li, Jiaxing Wu, Guojun Zhang, Wendong Zhang\",\"doi\":\"10.1108/sr-01-2024-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Human-induced marine environmental noise, such as commercial shipping and seismic exploration, is concentrated in the low-frequency range. Meanwhile, low-frequency sound signals can achieve long-distance propagation in water. To meet the requirements of long-distance underwater detection and communication, this paper aims to propose an micro-electro-mechanical system (MEMS) flexible conformal hydrophone for low-frequency underwater acoustic signals. The substrate of the proposed hydrophone is polyimide, with silicon as the piezoresistive unit.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>This paper proposes a MEMS heterojunction integration process for preparing flexible conformal hydrophones. In addition, sensors prepared based on this process are non-contact flexible sensors that can detect weak signals or small deformations.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The experimental results indicate that making devices with this process cannot only achieve heterogeneous integration of silicon film, metal wire and polyimide, but also allow for customized positions of the silicon film as needed. The success rate of silicon film transfer printing is over 95%. When a stress of 1 Pa is applied on the <em>x</em>-axis or <em>y</em>-axis, the maximum stress on Si as a pie-zoresistive material is above, and the average stress on the Si film is around.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The flexible conformal vector hydrophone prepared by heterogeneous integration technology provides ideas for underwater acoustic communication and signal acquisition of biomimetic flexible robotic fish.</p><!--/ Abstract__block -->\",\"PeriodicalId\":49540,\"journal\":{\"name\":\"Sensor Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensor Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/sr-01-2024-0032\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/sr-01-2024-0032","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

目的人类引起的海洋环境噪声,如商业航运和地震勘探,主要集中在低频范围。同时,低频声音信号可以在水中实现远距离传播。为满足远距离水下探测和通信的要求,本文旨在提出一种用于低频水下声信号的微机电系统(MEMS)柔性保形水听器。本文提出了一种用于制备柔性保形水听器的 MEMS 异质结集成工艺。实验结果表明,用这种工艺制作的器件不仅能实现硅膜、金属丝和聚酰亚胺的异质集成,还能根据需要定制硅膜的位置。硅膜转移印刷的成功率超过 95%。当在 x 轴或 y 轴上施加 1 Pa 的应力时,硅作为压阻材料所受的最大应力在以上,硅膜所受的平均应力在左右。 原创性/价值 利用异质集成技术制备的柔性共形矢量水听器为仿生柔性机器鱼的水下声学通信和信号采集提供了思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEMS flexible conformal hydrophone based on heterogeneous integration technology

Purpose

Human-induced marine environmental noise, such as commercial shipping and seismic exploration, is concentrated in the low-frequency range. Meanwhile, low-frequency sound signals can achieve long-distance propagation in water. To meet the requirements of long-distance underwater detection and communication, this paper aims to propose an micro-electro-mechanical system (MEMS) flexible conformal hydrophone for low-frequency underwater acoustic signals. The substrate of the proposed hydrophone is polyimide, with silicon as the piezoresistive unit.

Design/methodology/approach

This paper proposes a MEMS heterojunction integration process for preparing flexible conformal hydrophones. In addition, sensors prepared based on this process are non-contact flexible sensors that can detect weak signals or small deformations.

Findings

The experimental results indicate that making devices with this process cannot only achieve heterogeneous integration of silicon film, metal wire and polyimide, but also allow for customized positions of the silicon film as needed. The success rate of silicon film transfer printing is over 95%. When a stress of 1 Pa is applied on the x-axis or y-axis, the maximum stress on Si as a pie-zoresistive material is above, and the average stress on the Si film is around.

Originality/value

The flexible conformal vector hydrophone prepared by heterogeneous integration technology provides ideas for underwater acoustic communication and signal acquisition of biomimetic flexible robotic fish.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensor Review
Sensor Review 工程技术-仪器仪表
CiteScore
3.40
自引率
6.20%
发文量
50
审稿时长
3.7 months
期刊介绍: Sensor Review publishes peer reviewed state-of-the-art articles and specially commissioned technology reviews. Each issue of this multidisciplinary journal includes high quality original content covering all aspects of sensors and their applications, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of high technology sensor developments. Emphasis is placed on detailed independent regular and review articles identifying the full range of sensors currently available for specific applications, as well as highlighting those areas of technology showing great potential for the future. The journal encourages authors to consider the practical and social implications of their articles. All articles undergo a rigorous double-blind peer review process which involves an initial assessment of suitability of an article for the journal followed by sending it to, at least two reviewers in the field if deemed suitable. Sensor Review’s coverage includes, but is not restricted to: Mechanical sensors – position, displacement, proximity, velocity, acceleration, vibration, force, torque, pressure, and flow sensors Electric and magnetic sensors – resistance, inductive, capacitive, piezoelectric, eddy-current, electromagnetic, photoelectric, and thermoelectric sensors Temperature sensors, infrared sensors, humidity sensors Optical, electro-optical and fibre-optic sensors and systems, photonic sensors Biosensors, wearable and implantable sensors and systems, immunosensors Gas and chemical sensors and systems, polymer sensors Acoustic and ultrasonic sensors Haptic sensors and devices Smart and intelligent sensors and systems Nanosensors, NEMS, MEMS, and BioMEMS Quantum sensors Sensor systems: sensor data fusion, signals, processing and interfacing, signal conditioning.
期刊最新文献
Multi-sensor integration on one microfluidics chip for single-stranded DNA detection Advances in drift compensation algorithms for electronic nose technology A novel Au-NPs/DBTTA nanocomposite-based electrochemical sensor for the detection of ascorbic acid (AA) A step length estimation method based on frequency domain feature analysis and gait recognition for pedestrian dead reckoning Liquid viscosity measurement based on disk-shaped electromechanical resonator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1