Comprehensive analysis of MOSFET threshold voltage extraction method considering DIBL effect from 300 K down to 10 K

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Solid-state Electronics Pub Date : 2025-02-01 DOI:10.1016/j.sse.2024.109045
Zhizhao Ma , Hao Su , Yuhuan Lin , Shenghua Zhou , Feichi Zhou , Xiaoguang Liu , Longyang Lin , Yida Li , Kai Chen
{"title":"Comprehensive analysis of MOSFET threshold voltage extraction method considering DIBL effect from 300 K down to 10 K","authors":"Zhizhao Ma ,&nbsp;Hao Su ,&nbsp;Yuhuan Lin ,&nbsp;Shenghua Zhou ,&nbsp;Feichi Zhou ,&nbsp;Xiaoguang Liu ,&nbsp;Longyang Lin ,&nbsp;Yida Li ,&nbsp;Kai Chen","doi":"10.1016/j.sse.2024.109045","DOIUrl":null,"url":null,"abstract":"<div><div>It is well known that different threshold voltage <em>(V<sub>th</sub>)</em> extraction methods exhibit inconsistencies with respect to different drain voltage (<em>V<sub>d</sub></em>). This inconsistency becomes disruptive when temperature is considered for cryogenic applications such as quantum computing. This investigation examines various <em>V<sub>th</sub></em> extraction methods from room down to cryogenic temperatures, with a particular emphasis on how different <em>V<sub>d</sub></em> values combined with extraction methods behave as temperature decreases. For the first time, we find that the square root <em>I<sub>d</sub></em> method maintains consistency regardless of <em>V<sub>d</sub></em>, from 300 K all the way down to 10 K is identified. This provides a good insight into how the Drain-Induced Barrier Lowering (DIBL) effect changes with temperature, and positions the square root <em>I<sub>d</sub></em> method as a reliable tool for <em>V<sub>th</sub></em> extraction in cryogenic temperature.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"224 ","pages":"Article 109045"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124001941","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

It is well known that different threshold voltage (Vth) extraction methods exhibit inconsistencies with respect to different drain voltage (Vd). This inconsistency becomes disruptive when temperature is considered for cryogenic applications such as quantum computing. This investigation examines various Vth extraction methods from room down to cryogenic temperatures, with a particular emphasis on how different Vd values combined with extraction methods behave as temperature decreases. For the first time, we find that the square root Id method maintains consistency regardless of Vd, from 300 K all the way down to 10 K is identified. This provides a good insight into how the Drain-Induced Barrier Lowering (DIBL) effect changes with temperature, and positions the square root Id method as a reliable tool for Vth extraction in cryogenic temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Melt-Extruded Sensory Fibers for Electronic Textiles
IF 3.9 3区 材料科学Macromolecular Materials and EngineeringPub Date : 2021-12-15 DOI: 10.1002/mame.202100737
Jordan Tabor, Brendan Thompson, Talha Agcayazi, Alper Bozkurt, Tushar K. Ghosh
Melt-Extruded Sensory Fibers for Electronic Textiles
IF 3.9 3区 材料科学Macromolecular Materials and EngineeringPub Date : 2022-03-14 DOI: 10.1002/mame.202270011
Jordan Tabor, Brendan Thompson, Talha Agcayazi, Alper Bozkurt, Tushar K. Ghosh
New melt-processable thermoplastic polyimides for opto-electronic applications
IF 0 Other ConferencesPub Date : 2012-10-19 DOI: 10.1117/12.927984
Aditya Narayanan, Gurulingamurthy M. Haralur
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
期刊最新文献
Editorial Board Analytical modeling of nanoscale double-gate junctionless transistors comprising the impact of the source and drain underlap regions Recent progress in bipolar and heterojunction bipolar transistors on SOI Expanding the potential of Zn0.15Sn0.85(Se0.95S0.05)2 crystals for applications in near-infrared optoelectronics, sensing, and Van der Waals heterojunctions Intense near-infrared electroluminescence properties from ZnO:Yb LED
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1