Some considerations about Lambert W function-based nanoscale MOSFET charge control modeling

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Solid-state Electronics Pub Date : 2025-02-04 DOI:10.1016/j.sse.2025.109080
A. Ortiz-Conde , V.C.P. Silva , P.G.D. Agopian , J.A. Martino , F.J. García-Sánchez
{"title":"Some considerations about Lambert W function-based nanoscale MOSFET charge control modeling","authors":"A. Ortiz-Conde ,&nbsp;V.C.P. Silva ,&nbsp;P.G.D. Agopian ,&nbsp;J.A. Martino ,&nbsp;F.J. García-Sánchez","doi":"10.1016/j.sse.2025.109080","DOIUrl":null,"url":null,"abstract":"<div><div>The unwanted low-level doping present in supposedly undoped MOSFET channels has a significant effect on charge control and Lambert W function-based inversion charge MOSFET models, as well as on subsequent drain current models. We show that the hypothetical intrinsic MOSFET channel approximation, often used to describe a nominally undoped channel, produces significant errors, even for the low-level concentrations resulting from unintentional doping. We show that the traditional charge control model, which mathematically describes the gate voltage as the sum of one linear and one logarithmic term of the inversion charge, is only valid for the hypothetically intrinsic case. However, it may still be used for nominally undoped but unintentionally low-doped channel devices within the region of operation where the majority carriers are the dominant charge. With this in mind, we present here a better approximation of the nominally undoped MOSFET channel surface potential. We also propose an improved modified expression that describes the gate voltage as the sum of one linear and two logarithmic terms of the inversion charge. A new approximate drain current control formulation is also proposed to account for parasitic series resistance and/or mobility degradation. The new model agrees reasonably well with measurement data from nominally undoped vertically stacked GAA Si Nano Sheet MOSFETs.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"225 ","pages":"Article 109080"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125000255","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The unwanted low-level doping present in supposedly undoped MOSFET channels has a significant effect on charge control and Lambert W function-based inversion charge MOSFET models, as well as on subsequent drain current models. We show that the hypothetical intrinsic MOSFET channel approximation, often used to describe a nominally undoped channel, produces significant errors, even for the low-level concentrations resulting from unintentional doping. We show that the traditional charge control model, which mathematically describes the gate voltage as the sum of one linear and one logarithmic term of the inversion charge, is only valid for the hypothetically intrinsic case. However, it may still be used for nominally undoped but unintentionally low-doped channel devices within the region of operation where the majority carriers are the dominant charge. With this in mind, we present here a better approximation of the nominally undoped MOSFET channel surface potential. We also propose an improved modified expression that describes the gate voltage as the sum of one linear and two logarithmic terms of the inversion charge. A new approximate drain current control formulation is also proposed to account for parasitic series resistance and/or mobility degradation. The new model agrees reasonably well with measurement data from nominally undoped vertically stacked GAA Si Nano Sheet MOSFETs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
期刊最新文献
Editorial Board Comparison of radiation effects of LM and UMM structure GaAs triple-junction solar cells under 1 MeV neutron irradiation Well-balanced 4H-SiC JBSFET: Integrating JBS diode and VDMOSFET characteristics for reliable 1700V applications Influence of temperature inhomogeneity and trap charge on current imbalance of SiC MOSFETs Improvement of charge storage and retention characteristics of HfO2 Charge-Trapping layer in NVM based on InGaZnO channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1