首页 > 最新文献

生命科学最新文献

英文 中文
IF:
Hydraulic and Photosynthetic Performance of Antarctic Plants Under Successive Freeze-Thaw Cycles.
IF 6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-04-07 DOI: 10.1111/pce.15528
Valentina Vallejos, Francisca Fuentes, Domingo Sancho-Knapik, Jorge Gago, Constanza F Ramírez, Betsy K Rivera, Lohengrin A Cavieres, Jeroni Galmés, José Javier Peguero-Pina, Eustaquio Gil-Pelegrín, Patricia L Sáez

Climate change projections predict warming and increased weather variability, mainly in polar regions, altering freeze-thaw patterns. However, the effects of rising temperatures and more frequent freeze-thaw events on the water and CO2 management of Antarctic plants remain unclear. To address this, we conducted a laboratory experiment to investigate how growth temperature (5°C and 15°C) and successive freeze-thaw cycles influence the hydraulic and photosynthetic performance of Deschampsia antarctica (D. antarctica) and Colobanthus quitensis (C. quitensis). Our results showed that warmer conditions improved hydraulic and photosynthetic performance in both species, driven by anatomical adjustments in leaf xylem vessels. Additionally, plants exposed to successive freeze-thaw cycles exhibited a coordinated decline in whole-plant hydraulic conductivity and leaf gas exchange, regardless of growth temperature. The magnitude of changes (%) in photosynthetic traits after freeze-thaw cycles varied between species, with D. antarctica showing similar responses at both growth temperatures, while C. quitensis experienced more pronounced changes at the lower temperature. Overall, these findings suggest that while Antarctic plants benefit from warmer temperatures, repeated freeze-thaw events could disrupt their hydraulic balance and limit photosynthesis, particularly under natural environmental conditions.

{"title":"Hydraulic and Photosynthetic Performance of Antarctic Plants Under Successive Freeze-Thaw Cycles.","authors":"Valentina Vallejos, Francisca Fuentes, Domingo Sancho-Knapik, Jorge Gago, Constanza F Ramírez, Betsy K Rivera, Lohengrin A Cavieres, Jeroni Galmés, José Javier Peguero-Pina, Eustaquio Gil-Pelegrín, Patricia L Sáez","doi":"10.1111/pce.15528","DOIUrl":"https://doi.org/10.1111/pce.15528","url":null,"abstract":"<p><p>Climate change projections predict warming and increased weather variability, mainly in polar regions, altering freeze-thaw patterns. However, the effects of rising temperatures and more frequent freeze-thaw events on the water and CO<sub>2</sub> management of Antarctic plants remain unclear. To address this, we conducted a laboratory experiment to investigate how growth temperature (5°C and 15°C) and successive freeze-thaw cycles influence the hydraulic and photosynthetic performance of Deschampsia antarctica (D. antarctica) and Colobanthus quitensis (C. quitensis). Our results showed that warmer conditions improved hydraulic and photosynthetic performance in both species, driven by anatomical adjustments in leaf xylem vessels. Additionally, plants exposed to successive freeze-thaw cycles exhibited a coordinated decline in whole-plant hydraulic conductivity and leaf gas exchange, regardless of growth temperature. The magnitude of changes (%) in photosynthetic traits after freeze-thaw cycles varied between species, with D. antarctica showing similar responses at both growth temperatures, while C. quitensis experienced more pronounced changes at the lower temperature. Overall, these findings suggest that while Antarctic plants benefit from warmer temperatures, repeated freeze-thaw events could disrupt their hydraulic balance and limit photosynthesis, particularly under natural environmental conditions.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143802068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extraction of geometric and transport parameters from the time constant of exocytosis transients measured by nanoscale electrodes.
IF 2.2 4区 生物学 Q3 BIOPHYSICS Pub Date : 2025-04-07 DOI: 10.1007/s00249-025-01744-0
Sundeep Kapila, Pradeep R Nair

Exocytosis is a fundamental process related to the information exchange in the nervous and endocrine system. Among the various techniques, vesicle impact electrochemical cytometry (VIEC) has emerged as an effective method to mimic the exocytosis process and measure dynamic information about content transfer using nanoscale electrodes. In this article, through analytical models and large scale simulations, we develop scaling laws for the decay time constant ( τ ) for VIEC single-exponential transients. Specifically, our results anticipate a power law dependence of τ on the geometric and the transport parameters. This model compares very well with large scale simulations exploring the parameter space relevant for VIEC and with experimental results from literature. Remarkably, such physics-based compact models could allow for novel multi-feature-based self consistent strategies for back extraction of geometric and transport parameters and hence could contribute towards better statistical analysis and understanding of exocytosis transients and events.

{"title":"Extraction of geometric and transport parameters from the time constant of exocytosis transients measured by nanoscale electrodes.","authors":"Sundeep Kapila, Pradeep R Nair","doi":"10.1007/s00249-025-01744-0","DOIUrl":"https://doi.org/10.1007/s00249-025-01744-0","url":null,"abstract":"<p><p>Exocytosis is a fundamental process related to the information exchange in the nervous and endocrine system. Among the various techniques, vesicle impact electrochemical cytometry (VIEC) has emerged as an effective method to mimic the exocytosis process and measure dynamic information about content transfer using nanoscale electrodes. In this article, through analytical models and large scale simulations, we develop scaling laws for the decay time constant <math><mrow><mo>(</mo> <mi>τ</mi> <mo>)</mo></mrow> </math> for VIEC single-exponential transients. Specifically, our results anticipate a power law dependence of <math><mi>τ</mi></math> on the geometric and the transport parameters. This model compares very well with large scale simulations exploring the parameter space relevant for VIEC and with experimental results from literature. Remarkably, such physics-based compact models could allow for novel multi-feature-based self consistent strategies for back extraction of geometric and transport parameters and hence could contribute towards better statistical analysis and understanding of exocytosis transients and events.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143794312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of an endodermis-specific miR858b-MYB1L module in the regulation of Taxol biosynthesis in Taxus mairei
IF 6.2 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-04-05 DOI: 10.1111/tpj.70135
Chunna Yu, Danjin Zhang, Lingxiao Zhang, Zijin Fang, Yibo Zhang, Wanting Lin, Ruoyun Ma, Mengyin Zheng, Enhui Bai, Chenjia Shen

Taxol, a chemotherapeutic agent widely used for treating various cancers, is extracted from the stems of Taxus mairei. However, current knowledge regarding the effects of stem tissue and age on Taxol accumulation is limited. We employed matrix-assisted laser desorption/ionization mass spectrometry to visualize taxoids in stem section sections of varying ages from T. mairei. Laser capture microdissection integrated with data-dependent acquisition–MS/MS analysis identified that several Taxol biosynthesis pathway-related enzymes were predominantly produced in the endodermis, elucidating the molecular mechanisms underlying endodermis-specific Taxol accumulation. We identified an endodermis-specific MYB1-like (MYB1L) protein and proposed a potential function for the miR858-MYB1L module in regulating secondary metabolic pathways. DNA affinity purification sequencing analysis produced 92 506 target peaks for MYB1L. Motif enrichment analysis identified several de novo motifs, providing new insights into MYB recognition sites. Four target peaks of MYB1L were identified within the promoter sequences of Taxol synthesis genes, including TBT, DBTNBT, T13OH, and BAPT, and were confirmed using electrophoretic mobility shift assays. Dual-luciferase assays showed that MYB1L significantly activated the expression of TBT and BAPT. Our data indicate that the miR858b-MYB1L module plays a crucial role in the transcriptional regulation of Taxol biosynthesis by up-regulating the expression of TBT and BAPT genes in the endodermis.

{"title":"Role of an endodermis-specific miR858b-MYB1L module in the regulation of Taxol biosynthesis in Taxus mairei","authors":"Chunna Yu,&nbsp;Danjin Zhang,&nbsp;Lingxiao Zhang,&nbsp;Zijin Fang,&nbsp;Yibo Zhang,&nbsp;Wanting Lin,&nbsp;Ruoyun Ma,&nbsp;Mengyin Zheng,&nbsp;Enhui Bai,&nbsp;Chenjia Shen","doi":"10.1111/tpj.70135","DOIUrl":"https://doi.org/10.1111/tpj.70135","url":null,"abstract":"<div>\u0000 \u0000 <p>Taxol, a chemotherapeutic agent widely used for treating various cancers, is extracted from the stems of <i>Taxus mairei</i>. However, current knowledge regarding the effects of stem tissue and age on Taxol accumulation is limited. We employed matrix-assisted laser desorption/ionization mass spectrometry to visualize taxoids in stem section sections of varying ages from <i>T. mairei</i>. Laser capture microdissection integrated with data-dependent acquisition–MS/MS analysis identified that several Taxol biosynthesis pathway-related enzymes were predominantly produced in the endodermis, elucidating the molecular mechanisms underlying endodermis-specific Taxol accumulation. We identified an endodermis-specific MYB1-like (MYB1L) protein and proposed a potential function for the <i>miR858-MYB1L</i> module in regulating secondary metabolic pathways. DNA affinity purification sequencing analysis produced 92 506 target peaks for MYB1L. Motif enrichment analysis identified several <i>de novo</i> motifs, providing new insights into MYB recognition sites. Four target peaks of MYB1L were identified within the promoter sequences of Taxol synthesis genes, including <i>TBT</i>, <i>DBTNBT</i>, <i>T13OH</i>, and <i>BAPT</i>, and were confirmed using electrophoretic mobility shift assays. Dual-luciferase assays showed that MYB1L significantly activated the expression of <i>TBT</i> and <i>BAPT</i>. Our data indicate that the <i>miR858b-MYB1L</i> module plays a crucial role in the transcriptional regulation of Taxol biosynthesis by up-regulating the expression of <i>TBT</i> and <i>BAPT</i> genes in the endodermis.</p>\u0000 </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"122 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143778429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome editing in the green alga Chlamydomonas: past, present practice and future prospects
IF 6.2 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-04-05 DOI: 10.1111/tpj.70140
Adrian P. Nievergelt

The green alga Chlamydomonas is an important and versatile model organism for research topics ranging from photosynthesis and metabolism, cilia, and basal bodies to cellular communication and the cellular cycle and is of significant interest for green bioengineering processes. The genome in this unicellular green alga is contained in 17 haploid chromosomes and codes for 16 883 protein coding genes. Functional genomics, as well as biotechnological applications, rely on the ability to remove, add, and change these genes in a controlled and efficient manner. In this review, the history of gene editing in Chlamydomonas is put in the context of the wider developments in genetics to demonstrate how many of the key developments to engineer these algae follow the global trends and the availability of technology. Building on this background, an overview of the state of the art in Chlamydomonas engineering is given, focusing primarily on the practical aspects while giving examples of recent applications. Commonly encountered Chlamydomonas-specific challenges, recent developments, and community resources are presented, and finally, a comprehensive discussion on the emergence and evolution of CRISPR/Cas-based precision gene editing is given. An outline of possible future paths for gene editing based on current global trends in genetic engineering and tools for gene editing is presented.

{"title":"Genome editing in the green alga Chlamydomonas: past, present practice and future prospects","authors":"Adrian P. Nievergelt","doi":"10.1111/tpj.70140","DOIUrl":"https://doi.org/10.1111/tpj.70140","url":null,"abstract":"<p>The green alga <i>Chlamydomonas</i> is an important and versatile model organism for research topics ranging from photosynthesis and metabolism, cilia, and basal bodies to cellular communication and the cellular cycle and is of significant interest for green bioengineering processes. The genome in this unicellular green alga is contained in 17 haploid chromosomes and codes for 16 883 protein coding genes. Functional genomics, as well as biotechnological applications, rely on the ability to remove, add, and change these genes in a controlled and efficient manner. In this review, the history of gene editing in <i>Chlamydomonas</i> is put in the context of the wider developments in genetics to demonstrate how many of the key developments to engineer these algae follow the global trends and the availability of technology. Building on this background, an overview of the state of the art in <i>Chlamydomonas</i> engineering is given, focusing primarily on the practical aspects while giving examples of recent applications. Commonly encountered <i>Chlamydomonas</i>-specific challenges, recent developments, and community resources are presented, and finally, a comprehensive discussion on the emergence and evolution of CRISPR/Cas-based precision gene editing is given. An outline of possible future paths for gene editing based on current global trends in genetic engineering and tools for gene editing is presented.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"122 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70140","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143778229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of plant glycolysis and the tricarboxylic acid cycle by posttranslational modifications
IF 6.2 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-04-04 DOI: 10.1111/tpj.70142
Ke Zheng, Maria del Pilar Martinez, Maroua Bouzid, Manuel Balparda, Markus Schwarzländer, Veronica G. Maurino

Plant glycolysis and the tricarboxylic acid (TCA) cycle are key pathways of central carbon metabolism. They facilitate energy transformation, provide redox balance, and supply the building blocks for biosynthetic processes that underpin plant survival, growth, and productivity. Yet, rather than acting as static pathways, the fluxes that are mediated by the enzymes involved form a branched network. Flux modes can change flexibly to match cellular demands and environmental fluctuations. Several of the enzymes involved in glycolysis and the TCA cycle have been identified as targets of posttranslational modifications (PTMs). PTMs can act as regulators to facilitate changes in flux by rapidly and reversibly altering enzyme organization and function. Consequently, PTMs enable plants to rapidly adjust their metabolic flux landscape, match energy and precursor provision with the changeable needs, and enhance overall metabolic flexibility. Here, we review the impact of different PTMs on glycolytic and TCA cycle enzymes, focusing on modifications that induce functional changes rather than the mere occurrence of PTMs at specific sites. By synthesizing recent findings, we provide a foundation for a system-level understanding of how PTMs choreograph the remarkable flexibility of plant central carbon metabolism.

{"title":"Regulation of plant glycolysis and the tricarboxylic acid cycle by posttranslational modifications","authors":"Ke Zheng,&nbsp;Maria del Pilar Martinez,&nbsp;Maroua Bouzid,&nbsp;Manuel Balparda,&nbsp;Markus Schwarzländer,&nbsp;Veronica G. Maurino","doi":"10.1111/tpj.70142","DOIUrl":"https://doi.org/10.1111/tpj.70142","url":null,"abstract":"<p>Plant glycolysis and the tricarboxylic acid (TCA) cycle are key pathways of central carbon metabolism. They facilitate energy transformation, provide redox balance, and supply the building blocks for biosynthetic processes that underpin plant survival, growth, and productivity. Yet, rather than acting as static pathways, the fluxes that are mediated by the enzymes involved form a branched network. Flux modes can change flexibly to match cellular demands and environmental fluctuations. Several of the enzymes involved in glycolysis and the TCA cycle have been identified as targets of posttranslational modifications (PTMs). PTMs can act as regulators to facilitate changes in flux by rapidly and reversibly altering enzyme organization and function. Consequently, PTMs enable plants to rapidly adjust their metabolic flux landscape, match energy and precursor provision with the changeable needs, and enhance overall metabolic flexibility. Here, we review the impact of different PTMs on glycolytic and TCA cycle enzymes, focusing on modifications that induce functional changes rather than the mere occurrence of PTMs at specific sites. By synthesizing recent findings, we provide a foundation for a system-level understanding of how PTMs choreograph the remarkable flexibility of plant central carbon metabolism.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"122 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70142","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143778413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The homeostasis of β-alanine is key for Arabidopsis reproductive growth and development
IF 6.2 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-04-03 DOI: 10.1111/tpj.70134
Si Wu, Youjun Zhang, Urszula Luzarowska, Lei Yang, Mohamed A. Salem, Venkatesh P. Thirumalaikumar, Nir Sade, Vadim E. Galperin, Alisdair Fernie, Arun Sampathkumar, Shimon Bershtein, Corina M. Fusari, Yariv Brotman

β-Alanine, an abundant non-proteinogenic amino acid, acts as a precursor for coenzyme A and plays a role in various stress responses. However, a comprehensive understanding of its metabolism in plants remains incomplete. Previous metabolic genome-wide association studies (mGWAS) identified ALANINE:GLYOXYLATE AMINOTRANSFERASE2 (AGT2, AT4G39660) linked to β-alanine levels in Arabidopsis under normal conditions. In this study, we aimed to deepen our insights into β-alanine regulation by conducting mGWAS under two contrasting environmental conditions: control (12 h photoperiod, 21°C, 150 μmol m−2 sec−1) and stress (harvested after 1820 min at 32°C and darkness). We identified two highly significant quantitative trait loci (QTL) for β-alanine, including the AGT2 locus associated in both environments and ALDEHYDE DEHYDROGENASE6B2 (ALDH6B2, AT2G14170) associated only under stress conditions. A coexpression-correlation network revealed that the regulatory pathway involving β-alanine levels, AGT2, and ALDH6B2 connects the branched chained amino acid (BCAA) degradation through the propionate pathway. Metabolic profiles of AGT2 overexpression (OE) and knock-out (KO) lines (agt2) across various organs and developmental stages established the critical role of AGT2 in β-alanine metabolism. This work underscores the importance of β-alanine homeostasis for proper growth and development in Arabidopsis.

{"title":"The homeostasis of β-alanine is key for Arabidopsis reproductive growth and development","authors":"Si Wu,&nbsp;Youjun Zhang,&nbsp;Urszula Luzarowska,&nbsp;Lei Yang,&nbsp;Mohamed A. Salem,&nbsp;Venkatesh P. Thirumalaikumar,&nbsp;Nir Sade,&nbsp;Vadim E. Galperin,&nbsp;Alisdair Fernie,&nbsp;Arun Sampathkumar,&nbsp;Shimon Bershtein,&nbsp;Corina M. Fusari,&nbsp;Yariv Brotman","doi":"10.1111/tpj.70134","DOIUrl":"https://doi.org/10.1111/tpj.70134","url":null,"abstract":"<p>β-Alanine, an abundant non-proteinogenic amino acid, acts as a precursor for coenzyme A and plays a role in various stress responses. However, a comprehensive understanding of its metabolism in plants remains incomplete. Previous metabolic genome-wide association studies (mGWAS) identified <i>ALANINE:GLYOXYLATE AMINOTRANSFERASE2 (AGT2</i>, AT4G39660) linked to β-alanine levels in Arabidopsis under normal conditions. In this study, we aimed to deepen our insights into β-alanine regulation by conducting mGWAS under two contrasting environmental conditions: control (12 h photoperiod, 21°C, 150 μmol m<sup>−2</sup> sec<sup>−1</sup>) and stress (harvested after 1820 min at 32°C and darkness). We identified two highly significant quantitative trait loci (QTL) for β-alanine, including the <i>AGT2</i> locus associated in both environments and <i>ALDEHYDE DEHYDROGENASE6B2</i> (<i>ALDH6B2</i>, AT2G14170) associated only under stress conditions. A coexpression-correlation network revealed that the regulatory pathway involving β-alanine levels, <i>AGT2</i>, and <i>ALDH6B2</i> connects the branched chained amino acid (BCAA) degradation through the propionate pathway. Metabolic profiles of <i>AGT2</i> overexpression (OE) and knock-out (KO) lines (<i>agt2</i>) across various organs and developmental stages established the critical role of AGT2 in β-alanine metabolism. This work underscores the importance of β-alanine homeostasis for proper growth and development in Arabidopsis.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"122 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143769987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-Expression Pattern Analysis of Head-to-Head NLR Gene Pair Pik-H4.
IF 6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-04-03 DOI: 10.1111/pce.15509
Fengwei Gu, Huabin Xie, Qiwei Huang, Wenjie Zhou, Xiaodi Zou, Zhikai Han, Tao Guo, Hui Wang, Jiafeng Wang

Nucleotide-binding leucine-rich repeat (NLR) genes play a critical role in plant effector-triggered immunity (ETI) against pathogen invasion. However, the regulatory mechanisms governing NLR expression and functional dynamics, particularly in head-to-head NLR gene pairs, remain poorly understood. In this study, we investigated the regulatory mechanisms, subcellular localization and functional pathways associated with Pik-H4 gene pair. Bidirectional Pik-H4 promoter (PPik-H4) strengths were found across the whole plants and exhibited co-expressed patterns in tissues and cells, and the PPik-H4 activity was upregulated in vascular bundles during blast fungus invasion. Additionally, altering the co-expression of Pik1-H4 and Pik2-H4 via overexpression in rice or Nicotiana benthamiana did not compromise the immune response. Promoter analysis identified two minimal promoter regions that are essential for bidirectional transcription, and mutagenesis of the bidirectional TATA box confirmed its role in gene regulation. This dual-function promoter coordinates Pik-H4 expression in both directions, a regulatory innovation previously unreported in NLR-mediated immunity. In planta subcellular localization revealed Pik1-H4 relocates to vesicles, indicating its role in effector recognition, while Pik2-H4 predominantly accumulated in the nucleus. These new discoveries of Pik protein extended the putative immune function of NLR pairs. Transcriptome analysis demonstrated that Pik-H4-mediated resistance induces significant transcriptome reprogramming between 12- and 24-h postinoculation. In summary, these findings provide novel insights into the regulatory complexity and functional divergence within NLR bidirectional gene pairs in response to pathogen invasion.

{"title":"Co-Expression Pattern Analysis of Head-to-Head NLR Gene Pair Pik-H4.","authors":"Fengwei Gu, Huabin Xie, Qiwei Huang, Wenjie Zhou, Xiaodi Zou, Zhikai Han, Tao Guo, Hui Wang, Jiafeng Wang","doi":"10.1111/pce.15509","DOIUrl":"https://doi.org/10.1111/pce.15509","url":null,"abstract":"<p><p>Nucleotide-binding leucine-rich repeat (NLR) genes play a critical role in plant effector-triggered immunity (ETI) against pathogen invasion. However, the regulatory mechanisms governing NLR expression and functional dynamics, particularly in head-to-head NLR gene pairs, remain poorly understood. In this study, we investigated the regulatory mechanisms, subcellular localization and functional pathways associated with Pik-H4 gene pair. Bidirectional Pik-H4 promoter (P<sub>Pik-H4</sub>) strengths were found across the whole plants and exhibited co-expressed patterns in tissues and cells, and the P<sub>Pik-H4</sub> activity was upregulated in vascular bundles during blast fungus invasion. Additionally, altering the co-expression of Pik<sub>1</sub>-H4 and Pik<sub>2</sub>-H4 via overexpression in rice or Nicotiana benthamiana did not compromise the immune response. Promoter analysis identified two minimal promoter regions that are essential for bidirectional transcription, and mutagenesis of the bidirectional TATA box confirmed its role in gene regulation. This dual-function promoter coordinates Pik-H4 expression in both directions, a regulatory innovation previously unreported in NLR-mediated immunity. In planta subcellular localization revealed Pik<sub>1</sub>-H4 relocates to vesicles, indicating its role in effector recognition, while Pik<sub>2</sub>-H4 predominantly accumulated in the nucleus. These new discoveries of Pik protein extended the putative immune function of NLR pairs. Transcriptome analysis demonstrated that Pik-H4-mediated resistance induces significant transcriptome reprogramming between 12- and 24-h postinoculation. In summary, these findings provide novel insights into the regulatory complexity and functional divergence within NLR bidirectional gene pairs in response to pathogen invasion.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143770845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The sucrose transporter TaSWEET11 is critical for grain filling and yield potential in wheat (Triticum aestivum L.)
IF 6.2 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-04-03 DOI: 10.1111/tpj.70133
Mingming Wang, Jia Geng, Zhe Zhang, Wenxi Wang, Tian Ma, Pei Ni, Zihan Zhang, Xuanshuang Li, Jiewen Xing, Qixin Sun, Yufeng Zhang, Zhongfu Ni

Grain filling, a crucial process that determines grain weight, is regulated by the efficiency of sugar transport to the caryopsis. However, the regulation of sugar transport during this process in wheat remains largely unknown. In this study, we conducted genetic and transcriptomic analyses to investigate the role of TaSWEET11 in grain filling and its contribution to grain weight. TaSWEET11 encodes a membrane-localized protein and is primarily expressed in developing grains, specifically in the vascular bundle and nucellar projection. Knocking out TaSWEET11 disrupted starch synthesis in developing grains, resulting in shrunken and empty-pericarp grains. Further investigation revealed that TaSWEET11 is involved in sucrose transport, as knockout lines exhibited significantly reduced sucrose content. Transcriptomic analysis showed significant downregulation of genes related to starch synthesis and sucrose metabolism in knockout lines, shedding light on the mechanism behind grain shrinkage. Notably, overexpressing TaSWEET11 had a positive impact on effective tiller number, spike length, grain number per spike, and ultimately grain yield in CB037. In addition, TaSWEET11, as a key factor for grain filling, underwent strong selection during wheat domestication and breeding programs. Overall, these findings highlight the crucial role of TaSWEET11 in sucrose transport during grain filling and suggest its potential as a target for increasing wheat yield.

{"title":"The sucrose transporter TaSWEET11 is critical for grain filling and yield potential in wheat (Triticum aestivum L.)","authors":"Mingming Wang,&nbsp;Jia Geng,&nbsp;Zhe Zhang,&nbsp;Wenxi Wang,&nbsp;Tian Ma,&nbsp;Pei Ni,&nbsp;Zihan Zhang,&nbsp;Xuanshuang Li,&nbsp;Jiewen Xing,&nbsp;Qixin Sun,&nbsp;Yufeng Zhang,&nbsp;Zhongfu Ni","doi":"10.1111/tpj.70133","DOIUrl":"https://doi.org/10.1111/tpj.70133","url":null,"abstract":"<div>\u0000 \u0000 <p>Grain filling, a crucial process that determines grain weight, is regulated by the efficiency of sugar transport to the caryopsis. However, the regulation of sugar transport during this process in wheat remains largely unknown. In this study, we conducted genetic and transcriptomic analyses to investigate the role of <i>TaSWEET11</i> in grain filling and its contribution to grain weight. <i>TaSWEET11</i> encodes a membrane-localized protein and is primarily expressed in developing grains, specifically in the vascular bundle and nucellar projection. Knocking out <i>TaSWEET11</i> disrupted starch synthesis in developing grains, resulting in shrunken and empty-pericarp grains. Further investigation revealed that <i>TaSWEET11</i> is involved in sucrose transport, as knockout lines exhibited significantly reduced sucrose content. Transcriptomic analysis showed significant downregulation of genes related to starch synthesis and sucrose metabolism in knockout lines, shedding light on the mechanism behind grain shrinkage. Notably, overexpressing <i>TaSWEET11</i> had a positive impact on effective tiller number, spike length, grain number per spike, and ultimately grain yield in CB037. In addition, <i>TaSWEET11</i>, as a key factor for grain filling, underwent strong selection during wheat domestication and breeding programs. Overall, these findings highlight the crucial role of <i>TaSWEET11</i> in sucrose transport during grain filling and suggest its potential as a target for increasing wheat yield.</p>\u0000 </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"122 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143769986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring neural networks to uncover information-richer features for protein interaction prediction.
IF 2.2 4区 生物学 Q3 BIOPHYSICS Pub Date : 2025-04-03 DOI: 10.1007/s00249-025-01742-2
Greta Grassmann, Lorenzo Di Rienzo, Giancarlo Ruocco, Edoardo Milanetti, Mattia Miotto

Moving in a crowded cellular environment, proteins have to recognize and bind to each other with high specificity. This specificity reflects in a combination of geometric and chemical complementarities at the core of interacting regions that ultimately influences binding stability. Exploiting such peculiar complementarity patterns, we recently developed CIRNet, a neural network architecture capable of identifying pairs of protein core interacting residues and assisting docking algorithms by rescaling the proposed poses. Here, we present a detailed analysis of the geometric and chemical descriptors utilized by CIRNet, investigating its decision-making process to gain deeper insights into the interactions governing protein-protein binding and their interdependence. Specifically, we quantitatively assess (i) the relative importance of chemical and physical features in network training and (ii) their interplay at protein interfaces. We show that shape and hydrophobic-hydrophilic complementarities contain the most predictive information about the classification outcome. Electrostatic complementarity alone does not achieve high classification accuracy but is required to boost learning. Ultimately, our findings suggest that identifying the most information-dense features may enhance our understanding of the mechanisms driving protein-protein interactions at core interfaces.

{"title":"Exploring neural networks to uncover information-richer features for protein interaction prediction.","authors":"Greta Grassmann, Lorenzo Di Rienzo, Giancarlo Ruocco, Edoardo Milanetti, Mattia Miotto","doi":"10.1007/s00249-025-01742-2","DOIUrl":"https://doi.org/10.1007/s00249-025-01742-2","url":null,"abstract":"<p><p>Moving in a crowded cellular environment, proteins have to recognize and bind to each other with high specificity. This specificity reflects in a combination of geometric and chemical complementarities at the core of interacting regions that ultimately influences binding stability. Exploiting such peculiar complementarity patterns, we recently developed CIRNet, a neural network architecture capable of identifying pairs of protein core interacting residues and assisting docking algorithms by rescaling the proposed poses. Here, we present a detailed analysis of the geometric and chemical descriptors utilized by CIRNet, investigating its decision-making process to gain deeper insights into the interactions governing protein-protein binding and their interdependence. Specifically, we quantitatively assess (i) the relative importance of chemical and physical features in network training and (ii) their interplay at protein interfaces. We show that shape and hydrophobic-hydrophilic complementarities contain the most predictive information about the classification outcome. Electrostatic complementarity alone does not achieve high classification accuracy but is required to boost learning. Ultimately, our findings suggest that identifying the most information-dense features may enhance our understanding of the mechanisms driving protein-protein interactions at core interfaces.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143770838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leaf Excision and Exposure Duration Alter the Estimates of the Irreversible Photosynthetic Thermal Thresholds.
IF 6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-04-03 DOI: 10.1111/pce.15521
Margaux Didion-Gency, Alice Gauthey, Kate M Johnson, Philipp Schuler, Charlotte Grossiord

Understanding plant heat tolerance requires assessing their thermal thresholds, but commonly used methods have rarely been compared. Moreover, whether the photosynthetic machinery is irreversibly damaged past these thresholds remains unclear. We determined the critical temperature (Tcrit), the temperature causing a 50% reduction (T50), and the maximum tolerable temperature (Tmax) of photosystem II in Mediterranean cypress, Aleppo pine, and Scots pine saplings using 15- or 30-min heat exposure curves performed on living plants (in-vivo), excised needles (ex-vivo), and excised needles continuously exposed to each rising temperature (ex-vivo continuous). Dark-adapted fluorescence (Fv/Fm) and gas exchange were recorded for 4 days postheat stress to track recovery. Longer heat exposure (30 vs. 15 min) consistently led to lower Fv/Fm, T50, and Tmax. T50 and Tmax were reduced in both ex-vivo conditions compared to in-vivo ones. Conversely, Tcrit remained consistent between species, exposure durations, and methods. Gas exchange and Fv/Fm recovery mainly occurred before reaching T50 values (about 45°C). Our work highlights the importance of exposure duration and method selection when measuring and comparing thermal thresholds. Moreover, while Tcrit appears to be a reversible threshold, the photosynthetic machinery of studied species appears irreparably damaged past their T50.

{"title":"Leaf Excision and Exposure Duration Alter the Estimates of the Irreversible Photosynthetic Thermal Thresholds.","authors":"Margaux Didion-Gency, Alice Gauthey, Kate M Johnson, Philipp Schuler, Charlotte Grossiord","doi":"10.1111/pce.15521","DOIUrl":"https://doi.org/10.1111/pce.15521","url":null,"abstract":"<p><p>Understanding plant heat tolerance requires assessing their thermal thresholds, but commonly used methods have rarely been compared. Moreover, whether the photosynthetic machinery is irreversibly damaged past these thresholds remains unclear. We determined the critical temperature (T<sub>crit</sub>), the temperature causing a 50% reduction (T<sub>50</sub>), and the maximum tolerable temperature (T<sub>max</sub>) of photosystem II in Mediterranean cypress, Aleppo pine, and Scots pine saplings using 15- or 30-min heat exposure curves performed on living plants (in-vivo), excised needles (ex-vivo), and excised needles continuously exposed to each rising temperature (ex-vivo continuous). Dark-adapted fluorescence (F<sub>v</sub>/F<sub>m</sub>) and gas exchange were recorded for 4 days postheat stress to track recovery. Longer heat exposure (30 vs. 15 min) consistently led to lower F<sub>v</sub>/F<sub>m</sub>, T<sub>50</sub>, and T<sub>max</sub>. T<sub>50</sub> and T<sub>max</sub> were reduced in both ex-vivo conditions compared to in-vivo ones. Conversely, T<sub>crit</sub> remained consistent between species, exposure durations, and methods. Gas exchange and F<sub>v</sub>/F<sub>m</sub> recovery mainly occurred before reaching T<sub>50</sub> values (about 45°C). Our work highlights the importance of exposure duration and method selection when measuring and comparing thermal thresholds. Moreover, while T<sub>crit</sub> appears to be a reversible threshold, the photosynthetic machinery of studied species appears irreparably damaged past their T50.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143770851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1