首页 > 最新文献

理学最新文献

英文 中文
IF:
The brightest multi-colour phonon lasers 最亮的多色声子激光器
3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-13 DOI: 10.1038/s41377-024-01648-2
Mishkat Bhattacharya

A new device applies a single-colour electronic injection to create the brightest multi-colour phonon laser, with ten times more power and much narrower linewidth than others.

一种新设备利用单色电子注入技术制造出最明亮的多色声子激光器,其功率是其他设备的十倍,线宽也窄得多。
{"title":"The brightest multi-colour phonon lasers","authors":"Mishkat Bhattacharya","doi":"10.1038/s41377-024-01648-2","DOIUrl":"https://doi.org/10.1038/s41377-024-01648-2","url":null,"abstract":"<p>A new device applies a single-colour electronic injection to create the brightest multi-colour phonon laser, with ten times more power and much narrower linewidth than others.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"95 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative CQD detector for broadband multispectral imaging 用于宽带多光谱成像的创新型 CQD 探测器
3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-12 DOI: 10.1038/s41377-024-01621-z
Shengli Sun, Yaran Li, Fansheng Chen

Nature Photonics 18, 1147–1154 (2024)

自然-光子学》18 卷,1147-1154(2024 年)
{"title":"Innovative CQD detector for broadband multispectral imaging","authors":"Shengli Sun, Yaran Li, Fansheng Chen","doi":"10.1038/s41377-024-01621-z","DOIUrl":"https://doi.org/10.1038/s41377-024-01621-z","url":null,"abstract":"<p><i>Nature Photonics</i> <b>18</b>, 1147–1154 (2024)</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bessel beam optical coherence microscopy enables multiscale assessment of cerebrovascular network morphology and function 贝塞尔光束光学相干显微镜可对脑血管网络的形态和功能进行多尺度评估
3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-11 DOI: 10.1038/s41377-024-01649-1
Lukas Glandorf, Bastian Wittmann, Jeanne Droux, Chaim Glück, Bruno Weber, Susanne Wegener, Mohamad El Amki, Rainer Leitgeb, Bjoern Menze, Daniel Razansky

Understanding the morphology and function of large-scale cerebrovascular networks is crucial for studying brain health and disease. However, reconciling the demands for imaging on a broad scale with the precision of high-resolution volumetric microscopy has been a persistent challenge. In this study, we introduce Bessel beam optical coherence microscopy with an extended focus to capture the full cortical vascular hierarchy in mice over 1000 × 1000 × 360 μm3 field-of-view at capillary level resolution. The post-processing pipeline leverages a supervised deep learning approach for precise 3D segmentation of high-resolution angiograms, hence permitting reliable examination of microvascular structures at multiple spatial scales. Coupled with high-sensitivity Doppler optical coherence tomography, our method enables the computation of both axial and transverse blood velocity components as well as vessel-specific blood flow direction, facilitating a detailed assessment of morpho-functional characteristics across all vessel dimensions. Through graph-based analysis, we deliver insights into vascular connectivity, all the way from individual capillaries to broader network interactions, a task traditionally challenging for in vivo studies. The new imaging and analysis framework extends the frontiers of research into cerebrovascular function and neurovascular pathologies.

了解大规模脑血管网络的形态和功能对于研究大脑健康和疾病至关重要。然而,如何协调大尺度成像需求与高分辨率容积显微镜的精确性一直是个难题。在这项研究中,我们引入了具有扩展焦点的贝塞尔光束光学相干显微镜,以毛细管级分辨率捕捉小鼠1000 × 1000 × 360 μm3视场的完整皮层血管层次。后处理管道利用监督深度学习方法对高分辨率血管图进行精确的三维分割,从而在多个空间尺度上对微血管结构进行可靠的检查。结合高灵敏度多普勒光学相干断层扫描,我们的方法能够计算轴向和横向血流速度成分以及特定血管的血流方向,从而有助于详细评估所有血管维度的形态功能特征。通过基于图的分析,我们可以深入了解血管的连通性,从单个毛细血管到更广泛的网络互动,这是一项传统上对体内研究具有挑战性的任务。新的成像和分析框架拓展了脑血管功能和神经血管病理学的研究领域。
{"title":"Bessel beam optical coherence microscopy enables multiscale assessment of cerebrovascular network morphology and function","authors":"Lukas Glandorf, Bastian Wittmann, Jeanne Droux, Chaim Glück, Bruno Weber, Susanne Wegener, Mohamad El Amki, Rainer Leitgeb, Bjoern Menze, Daniel Razansky","doi":"10.1038/s41377-024-01649-1","DOIUrl":"https://doi.org/10.1038/s41377-024-01649-1","url":null,"abstract":"<p>Understanding the morphology and function of large-scale cerebrovascular networks is crucial for studying brain health and disease. However, reconciling the demands for imaging on a broad scale with the precision of high-resolution volumetric microscopy has been a persistent challenge. In this study, we introduce Bessel beam optical coherence microscopy with an extended focus to capture the full cortical vascular hierarchy in mice over 1000 × 1000 × 360 μm<sup>3</sup> field-of-view at capillary level resolution. The post-processing pipeline leverages a supervised deep learning approach for precise 3D segmentation of high-resolution angiograms, hence permitting reliable examination of microvascular structures at multiple spatial scales. Coupled with high-sensitivity Doppler optical coherence tomography, our method enables the computation of both axial and transverse blood velocity components as well as vessel-specific blood flow direction, facilitating a detailed assessment of morpho-functional characteristics across all vessel dimensions. Through graph-based analysis, we deliver insights into vascular connectivity, all the way from individual capillaries to broader network interactions, a task traditionally challenging for in vivo studies. The new imaging and analysis framework extends the frontiers of research into cerebrovascular function and neurovascular pathologies.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative phase imaging endoscopy with a metalens 使用金属丝进行定量相位成像内窥镜检查
3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-08 DOI: 10.1038/s41377-024-01587-y
Aamod Shanker, Johannes E. Fröch, Saswata Mukherjee, Maksym Zhelyeznyakov, Steven L. Brunton, Eric J. Seibel, Arka Majumdar

Quantitative phase imaging (QPI) recovers the exact wavefront of light from intensity measurements. Topographical and optical density maps of translucent microscopic bodies can be extracted from these quantified phase shifts. We demonstrate quantitative phase imaging at the tip of a coherent fiber bundle using chromatic aberrations inherent in a silicon nitride hyperboloid metalens. Our method leverages spectral multiplexing to recover phase from multiple defocus planes in a single capture using a color camera. Our 0.5 mm aperture metalens shows robust quantitative phase imaging capability with a ({28}^{circ}) field of view and 0.({2}{pi}) phase resolution ( ~ 0.({1}{lambda}) in air) for experiments with an endoscopic fiber bundle. Since the spectral functionality is encoded directly in the imaging lens, the metalens acts both as a focusing element and a spectral filter. The use of a simple computational backend will enable real-time operation. Key limitations in the adoption of phase imaging methods for endoscopy such as multiple acquisition, interferometric alignment or mechanical scanning are completely mitigated in the reported metalens based QPI.

定量相位成像(QPI)可从强度测量中恢复精确的光波面。从这些量化相移中可以提取半透明微观体的地形图和光密度图。我们利用氮化硅超球面金属膜固有的色差,演示了相干光纤束顶端的定量相位成像。我们的方法利用光谱多路复用技术,在使用彩色相机进行单次捕捉时从多个离焦平面恢复相位。我们的 0.5 毫米孔径金属膜具有强大的定量相位成像能力,视场和 0.({2}{pi}) 相位分辨率(在空气中为 ~ 0.({1}{lambda}) ),可用于内窥镜光纤束实验。由于光谱功能直接编码在成像透镜中,因此金属膜既是聚焦元件,又是光谱滤波器。使用简单的计算后端可实现实时操作。报告中提到的基于金属膜的 QPI 完全缓解了内窥镜相位成像方法的主要限制,如多重采集、干涉对准或机械扫描。
{"title":"Quantitative phase imaging endoscopy with a metalens","authors":"Aamod Shanker, Johannes E. Fröch, Saswata Mukherjee, Maksym Zhelyeznyakov, Steven L. Brunton, Eric J. Seibel, Arka Majumdar","doi":"10.1038/s41377-024-01587-y","DOIUrl":"https://doi.org/10.1038/s41377-024-01587-y","url":null,"abstract":"<p>Quantitative phase imaging (QPI) recovers the exact wavefront of light from intensity measurements. Topographical and optical density maps of translucent microscopic bodies can be extracted from these quantified phase shifts. We demonstrate quantitative phase imaging at the tip of a coherent fiber bundle using chromatic aberrations inherent in a silicon nitride hyperboloid metalens. Our method leverages spectral multiplexing to recover phase from multiple defocus planes in a single capture using a color camera. Our 0.5 mm aperture metalens shows robust quantitative phase imaging capability with a <span>({28}^{circ})</span> field of view and 0.<span>({2}{pi})</span> phase resolution ( ~ 0.<span>({1}{lambda})</span> in air) for experiments with an endoscopic fiber bundle. Since the spectral functionality is encoded directly in the imaging lens, the metalens acts both as a focusing element and a spectral filter. The use of a simple computational backend will enable real-time operation. Key limitations in the adoption of phase imaging methods for endoscopy such as multiple acquisition, interferometric alignment or mechanical scanning are completely mitigated in the reported metalens based QPI.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of probiotics-derived extracellular vesicles on livestock gut barrier function. 源于益生菌的细胞外囊泡对家畜肠道屏障功能的影响
IF 6.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-07 DOI: 10.1186/s40104-024-01102-8
Yuhan Zhang, Mengzhen Song, Jinping Fan, Xuming Guo, Shiyu Tao

Probiotic extracellular vesicles (pEVs) are biologically active nanoparticle structures that can regulate the intestinal tract through direct or indirect mechanisms. They enhance the intestinal barrier function in livestock and poultry and help alleviate intestinal diseases. The specific effects of pEVs depend on their internal functional components, including nucleic acids, proteins, lipids, and other substances. This paper presents a narrative review of the impact of pEVs on the intestinal barrier across various segments of the intestinal tract, exploring their mechanisms of action while highlighting the limitations of current research. Investigating the mechanisms through which probiotics operate via pEVs could deepen our understanding and provide a theoretical foundation for their application in livestock production.

益生菌胞外囊泡(pEVs)是一种具有生物活性的纳米颗粒结构,可通过直接或间接机制调节肠道。它们能增强家畜和家禽的肠道屏障功能,有助于缓解肠道疾病。pEV 的具体效果取决于其内部功能成分,包括核酸、蛋白质、脂类和其他物质。本文综述了益生菌对肠道各段肠道屏障的影响,探讨了其作用机制,同时强调了当前研究的局限性。研究益生菌通过 pEVs 发挥作用的机制可以加深我们的理解,并为其在畜牧生产中的应用提供理论基础。
{"title":"Impact of probiotics-derived extracellular vesicles on livestock gut barrier function.","authors":"Yuhan Zhang, Mengzhen Song, Jinping Fan, Xuming Guo, Shiyu Tao","doi":"10.1186/s40104-024-01102-8","DOIUrl":"10.1186/s40104-024-01102-8","url":null,"abstract":"<p><p>Probiotic extracellular vesicles (pEVs) are biologically active nanoparticle structures that can regulate the intestinal tract through direct or indirect mechanisms. They enhance the intestinal barrier function in livestock and poultry and help alleviate intestinal diseases. The specific effects of pEVs depend on their internal functional components, including nucleic acids, proteins, lipids, and other substances. This paper presents a narrative review of the impact of pEVs on the intestinal barrier across various segments of the intestinal tract, exploring their mechanisms of action while highlighting the limitations of current research. Investigating the mechanisms through which probiotics operate via pEVs could deepen our understanding and provide a theoretical foundation for their application in livestock production.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"15 1","pages":"149"},"PeriodicalIF":6.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542448/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-fast light-field microscopy with event detection 带事件检测功能的超快光场显微镜
3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-07 DOI: 10.1038/s41377-024-01603-1
Liheng Bian, Xuyang Chang, Hanwen Xu, Jun Zhang

The event detection technique has been introduced to light-field microscopy, boosting its imaging speed in orders of magnitude with simultaneous axial resolution enhancement in scattering medium.

光场显微镜引入了事件检测技术,使其成像速度提高了几个数量级,同时提高了散射介质的轴向分辨率。
{"title":"Ultra-fast light-field microscopy with event detection","authors":"Liheng Bian, Xuyang Chang, Hanwen Xu, Jun Zhang","doi":"10.1038/s41377-024-01603-1","DOIUrl":"https://doi.org/10.1038/s41377-024-01603-1","url":null,"abstract":"<p>The event detection technique has been introduced to light-field microscopy, boosting its imaging speed in orders of magnitude with simultaneous axial resolution enhancement in scattering medium.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"95 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dietary supplementation with N-acetyl-L-cysteine ameliorates hyperactivated ERK signaling in the endometrium that is linked to poor pregnancy outcomes following ovarian stimulation in pigs. 膳食中补充 N-乙酰-L-半胱氨酸可改善子宫内膜中与猪卵巢刺激后不良妊娠结局有关的 ERK 信号的过度激活。
IF 6.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-06 DOI: 10.1186/s40104-024-01109-1
Linghua Cheng, Zhicheng Shi, Yuan Yue, Yue Wang, Yusheng Qin, Wei Zhao, Yupei Hu, Qin Li, Min Guo, Lei An, Shumin Wang, Jianhui Tian

Background: Exogenous gonadotropin-controlled ovarian stimulation is the critical step in animal reproductive management, such as pig, sheep, bovine and other species. It helps synchronize ovulation or stimulate multiple ovulations. However, a number of evidence indicated an unexpected decrease in pregnancy outcomes following ovarian stimulation. This study aimed to explore the underlying mechanism of the pregnancy defect and develop a practical rescue strategy.

Results: Compared with those in the control group, gilts that underwent ovarian stimulation showed a decrease in pregnancy rate, farrowing rate, and total number of piglets born. Stimulated gilts also showed an increase in estradiol (E2) levels. The supraphysiological E2 level was correlated with the decrease in the number of piglets born. Furthermore, we found that high levels of E2 impair uterine receptivity, as shown by the overproliferation of endometrial epithelial cells. In vitro mechanistic studies demonstrated that high levels of E2 hyperactivate FGF-FGFR-ERK signaling cascade in the uterine endometrium, and in turn induces overproliferation of endometrial epithelial cells. Of note, N-acetyl-L-cysteine (NAC) supplementation effectively inhibits ERK hyperphosphorylation and ameliorates endometrial epithelial overproliferation. Importantly, in vivo experiments indicated that dietary NAC supplementation, compared with ovarian stimulation group, improves the uterine receptivity in gilts, and significantly increases the pregnancy rate and total number of piglets born.

Conclusions: Ovarian stimulation-induced supraphysiological levels of E2 impairs uterine receptivity by hyperactivating FGF-FGFR-ERK signaling cascade, thereby reducing pregnancy rate and litter size. Supplementing NAC to a conventional diet for gilts ameliorates hyperactivated ERK signaling and improves uterine receptivity, thus rescuing adverse pregnancy outcomes following ovarian stimulation.

背景:外源性促性腺激素控制的卵巢刺激是猪、羊、牛等动物繁殖管理的关键步骤。它有助于同步排卵或刺激多次排卵。然而,许多证据表明,卵巢刺激后的妊娠结局会意外下降。本研究旨在探索妊娠缺陷的内在机制,并制定切实可行的挽救策略:结果:与对照组相比,接受卵巢刺激的后备母猪的妊娠率、产仔率和出生仔猪总数均有所下降。刺激后备母猪的雌二醇(E2)水平也有所上升。超生理的 E2 水平与仔猪出生数量的减少有关。此外,我们还发现,高水平的 E2 会损害子宫的受孕能力,表现为子宫内膜上皮细胞过度增殖。体外机理研究表明,高水平的 E2 会过度激活子宫内膜中的 FGF-FGFR-ERK 信号级联,进而诱导子宫内膜上皮细胞过度增殖。值得注意的是,补充 N-乙酰-L-半胱氨酸(NAC)可有效抑制 ERK 过度磷酸化,改善子宫内膜上皮细胞的过度增殖。重要的是,体内实验表明,与卵巢刺激组相比,膳食中补充 NAC 可改善后备母猪的子宫接受能力,并显著提高妊娠率和仔猪出生总数:结论:卵巢刺激引起的超生理水平的E2通过过度激活FGF-FGFR-ERK信号级联而损害子宫接受能力,从而降低妊娠率和产仔数。在后备母猪的常规日粮中添加 NAC 可改善过度激活的 ERK 信号,提高子宫接受能力,从而挽救卵巢刺激后的不良妊娠结局。
{"title":"Dietary supplementation with N-acetyl-L-cysteine ameliorates hyperactivated ERK signaling in the endometrium that is linked to poor pregnancy outcomes following ovarian stimulation in pigs.","authors":"Linghua Cheng, Zhicheng Shi, Yuan Yue, Yue Wang, Yusheng Qin, Wei Zhao, Yupei Hu, Qin Li, Min Guo, Lei An, Shumin Wang, Jianhui Tian","doi":"10.1186/s40104-024-01109-1","DOIUrl":"10.1186/s40104-024-01109-1","url":null,"abstract":"<p><strong>Background: </strong>Exogenous gonadotropin-controlled ovarian stimulation is the critical step in animal reproductive management, such as pig, sheep, bovine and other species. It helps synchronize ovulation or stimulate multiple ovulations. However, a number of evidence indicated an unexpected decrease in pregnancy outcomes following ovarian stimulation. This study aimed to explore the underlying mechanism of the pregnancy defect and develop a practical rescue strategy.</p><p><strong>Results: </strong>Compared with those in the control group, gilts that underwent ovarian stimulation showed a decrease in pregnancy rate, farrowing rate, and total number of piglets born. Stimulated gilts also showed an increase in estradiol (E<sub>2</sub>) levels. The supraphysiological E<sub>2</sub> level was correlated with the decrease in the number of piglets born. Furthermore, we found that high levels of E<sub>2</sub> impair uterine receptivity, as shown by the overproliferation of endometrial epithelial cells. In vitro mechanistic studies demonstrated that high levels of E<sub>2</sub> hyperactivate FGF-FGFR-ERK signaling cascade in the uterine endometrium, and in turn induces overproliferation of endometrial epithelial cells. Of note, N-acetyl-L-cysteine (NAC) supplementation effectively inhibits ERK hyperphosphorylation and ameliorates endometrial epithelial overproliferation. Importantly, in vivo experiments indicated that dietary NAC supplementation, compared with ovarian stimulation group, improves the uterine receptivity in gilts, and significantly increases the pregnancy rate and total number of piglets born.</p><p><strong>Conclusions: </strong>Ovarian stimulation-induced supraphysiological levels of E<sub>2</sub> impairs uterine receptivity by hyperactivating FGF-FGFR-ERK signaling cascade, thereby reducing pregnancy rate and litter size. Supplementing NAC to a conventional diet for gilts ameliorates hyperactivated ERK signaling and improves uterine receptivity, thus rescuing adverse pregnancy outcomes following ovarian stimulation.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"15 1","pages":"148"},"PeriodicalIF":6.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539329/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142585390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The assembly and activation of the PANoptosome promote porcine granulosa cell programmed cell death during follicular atresia. PANoptosome的组装和激活促进了猪颗粒细胞在卵泡闭锁过程中的程序性细胞死亡。
IF 6.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-05 DOI: 10.1186/s40104-024-01107-3
Hao Wu, Yingxue Han, Jikang Liu, Rong Zhao, Shizhen Dai, Yajun Guo, Nan Li, Feng Yang, Shenming Zeng

Background: Follicular atresia significantly impairs female fertility and hastens reproductive senescence. Apoptosis of granulosa cells is the primary cause of follicular atresia. Pyroptosis and necroptosis, as additional forms of programmed cell death, have been reported in mammalian cells. However, the understanding of pyroptosis and necroptosis pathways in granulosa cells during follicular atresia remains unclear. This study explored the effects of programmed cell death in granulosa cells on follicular atresia and the underlying mechanisms.

Results: The results revealed that granulosa cells undergo programmed cell death including apoptosis, pyroptosis, and necroptosis during follicular atresia. For the first time, we identified the formation of a PANoptosome complex in porcine granulosa cells. This complex was initially identified as being composed of ZBP1, RIPK3, and RIPK1, and is recruited through the RHIM domain. Additionally, we demonstrated that caspase-6 is activated and cleaved, interacting with RIPK3 as a component of the PANoptosome. Heat stress may exacerbate the activation of the PANoptosome, leading to programmed cell death in granulosa cells.

Conclusions: Our data identified the formation of a PANoptosome complex that promoted programmed cell death in granulosa cells during the process of follicular atresia. These findings provide new insights into the molecular mechanisms underlying follicular atresia.

背景:卵泡闭锁严重影响女性的生育能力,并加速生殖衰老。颗粒细胞凋亡是卵泡闭锁的主要原因。作为程序性细胞死亡的其他形式,哺乳动物细胞中的热凋亡和坏死也有报道。然而,人们对卵泡闭锁过程中颗粒细胞中的热凋亡和坏死途径仍不清楚。本研究探讨了颗粒细胞程序性细胞死亡对卵泡闭锁的影响及其内在机制:结果:研究结果显示,颗粒细胞在卵泡闭锁过程中会发生程序性细胞死亡,包括细胞凋亡、热凋亡和坏死。我们首次在猪颗粒细胞中发现了PANoptosome复合体的形成。初步确定该复合体由 ZBP1、RIPK3 和 RIPK1 组成,并通过 RHIM 结构域被招募。此外,我们还证明了 Caspase-6 被激活和裂解,并与作为 PANoptosome 组成部分的 RIPK3 相互作用。热应激可能会加剧PANoptosome的激活,导致颗粒细胞的程序性细胞死亡:我们的数据发现,在卵泡闭锁过程中,PANoptosome复合物的形成促进了颗粒细胞的程序性细胞死亡。这些发现为了解卵泡闭锁的分子机制提供了新的视角。
{"title":"The assembly and activation of the PANoptosome promote porcine granulosa cell programmed cell death during follicular atresia.","authors":"Hao Wu, Yingxue Han, Jikang Liu, Rong Zhao, Shizhen Dai, Yajun Guo, Nan Li, Feng Yang, Shenming Zeng","doi":"10.1186/s40104-024-01107-3","DOIUrl":"10.1186/s40104-024-01107-3","url":null,"abstract":"<p><strong>Background: </strong>Follicular atresia significantly impairs female fertility and hastens reproductive senescence. Apoptosis of granulosa cells is the primary cause of follicular atresia. Pyroptosis and necroptosis, as additional forms of programmed cell death, have been reported in mammalian cells. However, the understanding of pyroptosis and necroptosis pathways in granulosa cells during follicular atresia remains unclear. This study explored the effects of programmed cell death in granulosa cells on follicular atresia and the underlying mechanisms.</p><p><strong>Results: </strong>The results revealed that granulosa cells undergo programmed cell death including apoptosis, pyroptosis, and necroptosis during follicular atresia. For the first time, we identified the formation of a PANoptosome complex in porcine granulosa cells. This complex was initially identified as being composed of ZBP1, RIPK3, and RIPK1, and is recruited through the RHIM domain. Additionally, we demonstrated that caspase-6 is activated and cleaved, interacting with RIPK3 as a component of the PANoptosome. Heat stress may exacerbate the activation of the PANoptosome, leading to programmed cell death in granulosa cells.</p><p><strong>Conclusions: </strong>Our data identified the formation of a PANoptosome complex that promoted programmed cell death in granulosa cells during the process of follicular atresia. These findings provide new insights into the molecular mechanisms underlying follicular atresia.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"15 1","pages":"147"},"PeriodicalIF":6.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536665/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum sensing with optically accessible spin defects in van der Waals layered materials 利用范德华层材料中光可及自旋缺陷实现量子传感
3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-05 DOI: 10.1038/s41377-024-01630-y
Hong-Hua Fang, Xiao-Jie Wang, Xavier Marie, Hong-Bo Sun

Quantum sensing has emerged as a powerful technique to detect and measure physical and chemical parameters with exceptional precision. One of the methods is to use optically active spin defects within solid-state materials. These defects act as sensors and have made significant progress in recent years, particularly in the realm of two-dimensional (2D) spin defects. In this article, we focus on the latest trends in quantum sensing that use spin defects in van der Waals (vdW) materials. We discuss the benefits of combining optically addressable spin defects with 2D vdW materials while highlighting the challenges and opportunities to use these defects. To make quantum sensing practical and applicable, the article identifies some areas worth further exploration. These include identifying spin defects with properties suitable for quantum sensing, generating quantum defects on demand with control of their spatial localization, understanding the impact of layer thickness and interface on quantum sensing, and integrating spin defects with photonic structures for new functionalities and higher emission rates. The article explores the potential applications of quantum sensing in several fields, such as superconductivity, ferromagnetism, 2D nanoelectronics, and biology. For instance, combining nanoscale microfluidic technology with nanopore and quantum sensing may lead to a new platform for DNA sequencing. As materials technology continues to evolve, and with the advancement of defect engineering techniques, 2D spin defects are expected to play a vital role in quantum sensing.

量子传感已经成为一种强大的技术,可以非常精确地探测和测量物理和化学参数。其中一种方法是利用固态材料中的光学活性自旋缺陷。近年来,这些缺陷作为传感器取得了重大进展,尤其是在二维(2D)自旋缺陷领域。在本文中,我们将重点讨论利用范德华(vdW)材料中的自旋缺陷进行量子传感的最新趋势。我们讨论了将光学可寻址自旋缺陷与二维范德华材料相结合的好处,同时强调了使用这些缺陷所面临的挑战和机遇。为了使量子传感切实可行,文章指出了一些值得进一步探索的领域。这些领域包括识别具有适合量子传感特性的自旋缺陷、按需生成量子缺陷并控制其空间定位、了解层厚度和界面对量子传感的影响,以及将自旋缺陷与光子结构集成以实现新功能和更高的发射率。文章探讨了量子传感在超导、铁磁、二维纳米电子学和生物学等多个领域的潜在应用。例如,将纳米级微流体技术与纳米孔和量子传感技术相结合,可能会开发出一种新的 DNA 测序平台。随着材料技术的不断发展,以及缺陷工程技术的进步,二维自旋缺陷有望在量子传感领域发挥重要作用。
{"title":"Quantum sensing with optically accessible spin defects in van der Waals layered materials","authors":"Hong-Hua Fang, Xiao-Jie Wang, Xavier Marie, Hong-Bo Sun","doi":"10.1038/s41377-024-01630-y","DOIUrl":"https://doi.org/10.1038/s41377-024-01630-y","url":null,"abstract":"<p>Quantum sensing has emerged as a powerful technique to detect and measure physical and chemical parameters with exceptional precision. One of the methods is to use optically active spin defects within solid-state materials. These defects act as sensors and have made significant progress in recent years, particularly in the realm of two-dimensional (2D) spin defects. In this article, we focus on the latest trends in quantum sensing that use spin defects in van der Waals (vdW) materials. We discuss the benefits of combining optically addressable spin defects with 2D vdW materials while highlighting the challenges and opportunities to use these defects. To make quantum sensing practical and applicable, the article identifies some areas worth further exploration. These include identifying spin defects with properties suitable for quantum sensing, generating quantum defects on demand with control of their spatial localization, understanding the impact of layer thickness and interface on quantum sensing, and integrating spin defects with photonic structures for new functionalities and higher emission rates. The article explores the potential applications of quantum sensing in several fields, such as superconductivity, ferromagnetism, 2D nanoelectronics, and biology. For instance, combining nanoscale microfluidic technology with nanopore and quantum sensing may lead to a new platform for DNA sequencing. As materials technology continues to evolve, and with the advancement of defect engineering techniques, 2D spin defects are expected to play a vital role in quantum sensing.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polaritons light up future displays 极化子点亮未来显示器
3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-04 DOI: 10.1038/s41377-024-01647-3
Andreas Mischok

Exciton-polaritons have long been a focus point of fundamental research towards polariton lasing, chemistry, and quantum optics. Recent developments now show their extraordinary potential for efficient and bright displays with ultimate color purity.

长期以来,激子-极化子一直是极化子激光、化学和量子光学基础研究的重点。最近的发展表明,它们在实现高效明亮、色彩纯正的显示器方面具有非凡的潜力。
{"title":"Polaritons light up future displays","authors":"Andreas Mischok","doi":"10.1038/s41377-024-01647-3","DOIUrl":"https://doi.org/10.1038/s41377-024-01647-3","url":null,"abstract":"<p>Exciton-polaritons have long been a focus point of fundamental research towards polariton lasing, chemistry, and quantum optics. Recent developments now show their extraordinary potential for efficient and bright displays with ultimate color purity.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"145 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 水生生物学报 微生物学报 安徽化工 应用数学和力学 干旱区研究 植物研究 Chemistry Zhongguo Sheng Wu Hua Xue Yu Fen Zi Sheng Wu Xue Bao 中国生物工程杂志 中国安全科学学报 中国生物制品学杂志 Bo Pu Xue Za Zhi 电子器件 发光学报 Chin. J. Org. Chem. 稀土 热带作物学报 Chin. Sci. Bull. 中国医药工业杂志 地学前缘 精细化工 实验科学与技术 Frontiers in Biology Frontiers of Chemistry in China 工业工程与管理 工业催化 信息记录材料 江苏化工 Journal of Biology 原子与分子物理学报 中国药科大学学报 质谱学报 地球科学与环境学报 电化学 Journal of environmental sciences 功能材料与器件学报 Journal of Gems & Gemmology 河北工业大学学报 河北科技大学学报 菌物研究 分析测试学报 湖南师范大学自然科学学报 黑龙江大学自然科学学报 分子催化 天津理工大学学报 热带亚热带植物学报 武汉理工大学学报 Zhejiang Daxue Xue Bao Nong Ye Yu Sheng Ming Ke Xue Ban 辽宁化工 Light-Science & Applications 海洋地质与第四纪地质 中国海洋大学学报(自然科学版) Plant Science Journal Physics 贵金属 中国科学(化学) 光散射学报 Vacuum Electronics 世界科技研究与发展 Nano Materials Science Journal of BioX Research Journal of Marine Sciences Smart Cities 稀有金属 Education in Chemistry 光学技术 核聚变与等离子体物理 Acta Geogr Sin Acta Seismologica Sinica 地震地质 World Affairs 固体电子学研究与进展 中国科学:数学 生物多样性 大气科学 中国科学:技术科学 遥感学报 光学应用 复杂系统与复杂性科学 石油与天然气地质 Logistics Research Earth 传感技术学报 强激光与粒子束 Contemporary Economics MIT TECHNOL REV SOUND VIB ACTA METEOROL SIN 海洋学报 Nanomanufacturing and Metrology Historical Geography Carbon Resources Conversion Fossils Journal of Global Change Data Discovery 应用数学与应用物理(英文) 水文地质工程地质 Earthquake Science 应用数学与计算数学学报 天文与天体物理 世界建筑
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1