首页 > 最新文献

生物学最新文献

英文 中文
IF:
Structural response of microtubule and actin cytoskeletons to direct intracellular load. 微管和肌动蛋白细胞骨架对细胞内直接负荷的结构反应。
IF 7.4 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-03 Epub Date: 2024-11-15 DOI: 10.1083/jcb.202403136
Ryota Orii, Hirokazu Tanimoto

Microtubule and actin are the two major cytoskeletal polymers that form organized functional structures in the interior of eukaryotic cells. Although the structural mechanics of the cytoskeleton has been extensively studied by direct manipulations in in vitro reconstitution systems, such unambiguous characterizations inside the living cell are sparse. Here, we report a comprehensive analysis of how the microtubule and actin cytoskeletons structurally respond to direct intracellular load. Ferrofluid-based intracellular magnetic tweezers reveal rheological properties of the microtubule complex primarily determined by filamentous actin. The strain fields of the microtubule complex and actin meshwork follow the same scaling, suggesting that the two cytoskeletal systems behave as an integrated elastic body. The structural responses of single microtubules to contact and remote forces further evidence that the individual microtubules are enclosed by the elastic medium of actin. These results, directly characterizing the microtubule and actin cytoskeletons as an interacting continuum throughout the cytoplasm, serve as a cornerstone for the physical understanding of intracellular organization.

微管和肌动蛋白是真核细胞内部形成有组织功能结构的两大细胞骨架聚合物。虽然细胞骨架的结构力学已通过体外重组系统中的直接操作得到了广泛研究,但在活细胞内这种明确的表征却很少。在这里,我们报告了对微管和肌动蛋白细胞骨架如何在结构上响应直接细胞内负荷的全面分析。基于铁流体的细胞内磁镊揭示了主要由丝状肌动蛋白决定的微管复合体的流变特性。微管复合体和肌动蛋白网状结构的应变场遵循相同的比例,表明这两个细胞骨架系统表现为一个整体的弹性体。单个微管对接触力和远距离力的结构反应进一步证明,单个微管被肌动蛋白的弹性介质所包围。这些结果直接描述了微管和肌动蛋白细胞骨架在整个细胞质中作为一个相互作用的连续体的特性,是从物理学角度理解细胞内组织的基石。
{"title":"Structural response of microtubule and actin cytoskeletons to direct intracellular load.","authors":"Ryota Orii, Hirokazu Tanimoto","doi":"10.1083/jcb.202403136","DOIUrl":"10.1083/jcb.202403136","url":null,"abstract":"<p><p>Microtubule and actin are the two major cytoskeletal polymers that form organized functional structures in the interior of eukaryotic cells. Although the structural mechanics of the cytoskeleton has been extensively studied by direct manipulations in in vitro reconstitution systems, such unambiguous characterizations inside the living cell are sparse. Here, we report a comprehensive analysis of how the microtubule and actin cytoskeletons structurally respond to direct intracellular load. Ferrofluid-based intracellular magnetic tweezers reveal rheological properties of the microtubule complex primarily determined by filamentous actin. The strain fields of the microtubule complex and actin meshwork follow the same scaling, suggesting that the two cytoskeletal systems behave as an integrated elastic body. The structural responses of single microtubules to contact and remote forces further evidence that the individual microtubules are enclosed by the elastic medium of actin. These results, directly characterizing the microtubule and actin cytoskeletons as an interacting continuum throughout the cytoplasm, serve as a cornerstone for the physical understanding of intracellular organization.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"224 2","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epidermal maintenance of Langerhans cells relies on autophagy-regulated lipid metabolism. 朗格汉斯细胞的表皮维持依赖于自噬调节的脂质代谢。
IF 7.4 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-03 Epub Date: 2024-11-13 DOI: 10.1083/jcb.202403178
Florent Arbogast, Raquel Sal-Carro, Wacym Boufenghour, Quentin Frenger, Delphine Bouis, Louise Filippi De La Palavesa, Jean-Daniel Fauny, Olivier Griso, Hélène Puccio, Rebecca Fima, Thierry Huby, Emmanuel L Gautier, Anne Molitor, Raphaël Carapito, Seiamak Bahram, Nikolaus Romani, Björn E Clausen, Benjamin Voisin, Christopher G Mueller, Frédéric Gros, Vincent Flacher

Macroautophagy (often-named autophagy), a catabolic process involving autophagy-related (Atg) genes, prevents the accumulation of harmful cytoplasmic components and mobilizes energy reserves in long-lived and self-renewing cells. Autophagy deficiency affects antigen presentation in conventional dendritic cells (DCs) without impacting their survival. However, previous studies did not address epidermal Langerhans cells (LCs). Here, we demonstrate that deletion of either Atg5 or Atg7 in LCs leads to their gradual depletion. ATG5-deficient LCs showed metabolic dysregulation and accumulated neutral lipids. Despite increased mitochondrial respiratory capacity, they were unable to process lipids, eventually leading them to ferroptosis. Finally, metabolically impaired LCs upregulated proinflammatory transcripts and showed decreased expression of neuronal interaction receptors. Altogether, autophagy represents a critical regulator of lipid storage and metabolism in LCs, allowing their maintenance in the epidermis.

大自噬(常被称为自噬)是一种涉及自噬相关(Atg)基因的分解代谢过程,可防止有害细胞质成分的积累,并调动长寿命和自我更新细胞的能量储备。自噬缺陷会影响传统树突状细胞(DC)的抗原递呈,但不会影响其存活。然而,之前的研究并未涉及表皮朗格汉斯细胞(LCs)。在这里,我们证明了 LCs 中 Atg5 或 Atg7 的缺失会导致其逐渐耗竭。ATG5 缺失的 LCs 表现出新陈代谢失调并积累中性脂质。尽管线粒体呼吸能力增强,但它们仍无法处理脂质,最终导致它们发生铁变态反应。最后,代谢受损的 LCs 会上调促炎转录本,并显示神经元相互作用受体的表达减少。总之,自噬是 LCs 脂质储存和新陈代谢的关键调节因子,可使 LCs 维持在表皮中。
{"title":"Epidermal maintenance of Langerhans cells relies on autophagy-regulated lipid metabolism.","authors":"Florent Arbogast, Raquel Sal-Carro, Wacym Boufenghour, Quentin Frenger, Delphine Bouis, Louise Filippi De La Palavesa, Jean-Daniel Fauny, Olivier Griso, Hélène Puccio, Rebecca Fima, Thierry Huby, Emmanuel L Gautier, Anne Molitor, Raphaël Carapito, Seiamak Bahram, Nikolaus Romani, Björn E Clausen, Benjamin Voisin, Christopher G Mueller, Frédéric Gros, Vincent Flacher","doi":"10.1083/jcb.202403178","DOIUrl":"10.1083/jcb.202403178","url":null,"abstract":"<p><p>Macroautophagy (often-named autophagy), a catabolic process involving autophagy-related (Atg) genes, prevents the accumulation of harmful cytoplasmic components and mobilizes energy reserves in long-lived and self-renewing cells. Autophagy deficiency affects antigen presentation in conventional dendritic cells (DCs) without impacting their survival. However, previous studies did not address epidermal Langerhans cells (LCs). Here, we demonstrate that deletion of either Atg5 or Atg7 in LCs leads to their gradual depletion. ATG5-deficient LCs showed metabolic dysregulation and accumulated neutral lipids. Despite increased mitochondrial respiratory capacity, they were unable to process lipids, eventually leading them to ferroptosis. Finally, metabolically impaired LCs upregulated proinflammatory transcripts and showed decreased expression of neuronal interaction receptors. Altogether, autophagy represents a critical regulator of lipid storage and metabolism in LCs, allowing their maintenance in the epidermis.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"224 2","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Securin regulates the spatiotemporal dynamics of separase. Securin 可调节分离酶的时空动态。
IF 7.4 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-03 Epub Date: 2024-11-18 DOI: 10.1083/jcb.202312099
Christopher G Sorensen Turpin, Dillon Sloan, Marian LaForest, Lindsey Klebanow, Diana Mitchell, Aaron F Severson, Joshua N Bembenek

Separase regulates multiple aspects of the metaphase-to-anaphase transition. Separase cleaves cohesin to allow chromosome segregation and localizes to vesicles to promote exocytosis. The anaphase-promoting complex/cyclosome (APC/C) activates separase by ubiquitinating its inhibitory chaperone, securin, triggering its degradation. How this pathway controls the exocytic function of separase is unknown. During meiosis I, securin is degraded over several minutes, while separase rapidly relocalizes from kinetochore structures at the spindle and cortex to sites of action on chromosomes and vesicles at anaphase onset. The loss of cohesin coincides with the relocalization of separase to the chromosome midbivalent at anaphase onset. APC/C depletion prevents separase relocalization, while securin depletion causes precocious separase relocalization. Expression of non-degradable securin inhibits chromosome segregation, exocytosis, and separase localization to vesicles but not to the anaphase spindle. We conclude that APC/C-mediated securin degradation controls separase localization. This spatiotemporal regulation will impact the effective local concentration of separase for more precise targeting of substrates in anaphase.

Separase调节着色期向无色期转变的多个方面。Separase 可裂解粘合素以实现染色体分离,并定位到囊泡以促进外渗。无丝分裂促进复合体/环体(APC/C)通过泛素化抑制性伴侣蛋白securin来激活分离酶,从而引发其降解。这一途径如何控制分离酶的外排功能尚不清楚。减数分裂 I 期间,securin 在几分钟内降解,而分离酶则在无丝分裂开始时迅速从纺锤体和皮层的动点核心结构重新定位到染色体和囊泡上的作用点。在无丝分裂期开始时,内聚蛋白的缺失与分离酶重新定位到染色体中段的时间相吻合。APC/C 的缺失会阻止分离酶的重新定位,而securin 的缺失会导致分离酶提前重新定位。表达不可降解的securin可抑制染色体分离、外吞和分离酶定位到囊泡,但不能抑制分离酶定位到无极期纺锤体。我们的结论是,APC/C 介导的securin降解控制着分离酶的定位。这种时空调控将影响分离酶的有效局部浓度,从而在无丝分裂期更精确地靶向底物。
{"title":"Securin regulates the spatiotemporal dynamics of separase.","authors":"Christopher G Sorensen Turpin, Dillon Sloan, Marian LaForest, Lindsey Klebanow, Diana Mitchell, Aaron F Severson, Joshua N Bembenek","doi":"10.1083/jcb.202312099","DOIUrl":"10.1083/jcb.202312099","url":null,"abstract":"<p><p>Separase regulates multiple aspects of the metaphase-to-anaphase transition. Separase cleaves cohesin to allow chromosome segregation and localizes to vesicles to promote exocytosis. The anaphase-promoting complex/cyclosome (APC/C) activates separase by ubiquitinating its inhibitory chaperone, securin, triggering its degradation. How this pathway controls the exocytic function of separase is unknown. During meiosis I, securin is degraded over several minutes, while separase rapidly relocalizes from kinetochore structures at the spindle and cortex to sites of action on chromosomes and vesicles at anaphase onset. The loss of cohesin coincides with the relocalization of separase to the chromosome midbivalent at anaphase onset. APC/C depletion prevents separase relocalization, while securin depletion causes precocious separase relocalization. Expression of non-degradable securin inhibits chromosome segregation, exocytosis, and separase localization to vesicles but not to the anaphase spindle. We conclude that APC/C-mediated securin degradation controls separase localization. This spatiotemporal regulation will impact the effective local concentration of separase for more precise targeting of substrates in anaphase.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"224 2","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activation of lysosomal Ca2+ channels mitigates mitochondrial damage and oxidative stress. 激活溶酶体 Ca2+ 通道可减轻线粒体损伤和氧化应激。
IF 7.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-06 Epub Date: 2024-11-05 DOI: 10.1083/jcb.202403104
Xinghua Feng, Weijie Cai, Qian Li, Liding Zhao, Yaping Meng, Haoxing Xu

Elevated levels of plasma-free fatty acids and oxidative stress have been identified as putative primary pathogenic factors in endothelial dysfunction etiology, though their roles are unclear. In human endothelial cells, we found that saturated fatty acids (SFAs)-including the plasma-predominant palmitic acid (PA)-cause mitochondrial fragmentation and elevation of intracellular reactive oxygen species (ROS) levels. TRPML1 is a lysosomal ROS-sensitive Ca2+ channel that regulates lysosomal trafficking and biogenesis. Small-molecule agonists of TRPML1 prevented PA-induced mitochondrial damage and ROS elevation through activation of transcriptional factor EB (TFEB), which boosts lysosome biogenesis and mitophagy. Whereas genetically silencing TRPML1 abolished the protective effects of TRPML1 agonism, TRPML1 overexpression conferred a full resistance to PA-induced oxidative damage. Pharmacologically activating the TRPML1-TFEB pathway was sufficient to restore mitochondrial and redox homeostasis in SFA-damaged endothelial cells. The present results suggest that lysosome activation represents a viable strategy for alleviating oxidative damage, a common pathogenic mechanism of metabolic and age-related diseases.

血浆中游离脂肪酸和氧化应激水平的升高已被确定为内皮功能障碍病因学中可能的主要致病因素,但它们的作用尚不清楚。在人类内皮细胞中,我们发现饱和脂肪酸(SFAs)--包括血浆中占主导地位的棕榈酸(PA)--会导致线粒体破碎和细胞内活性氧(ROS)水平升高。TRPML1 是一种溶酶体 ROS 敏感性 Ca2+ 通道,可调节溶酶体的转运和生物生成。TRPML1的小分子激动剂可通过激活转录因子EB(TFEB)防止PA诱导的线粒体损伤和ROS升高,而转录因子EB可促进溶酶体的生物生成和有丝分裂。基因沉默TRPML1会取消TRPML1激动的保护作用,而过表达TRPML1则会完全抵抗PA诱导的氧化损伤。药物激活 TRPML1-TFEB 通路足以恢复 SFA 损伤的内皮细胞的线粒体和氧化还原平衡。本研究结果表明,溶酶体激活是减轻氧化损伤的一种可行策略,氧化损伤是代谢性疾病和与年龄相关疾病的常见致病机制。
{"title":"Activation of lysosomal Ca2+ channels mitigates mitochondrial damage and oxidative stress.","authors":"Xinghua Feng, Weijie Cai, Qian Li, Liding Zhao, Yaping Meng, Haoxing Xu","doi":"10.1083/jcb.202403104","DOIUrl":"10.1083/jcb.202403104","url":null,"abstract":"<p><p>Elevated levels of plasma-free fatty acids and oxidative stress have been identified as putative primary pathogenic factors in endothelial dysfunction etiology, though their roles are unclear. In human endothelial cells, we found that saturated fatty acids (SFAs)-including the plasma-predominant palmitic acid (PA)-cause mitochondrial fragmentation and elevation of intracellular reactive oxygen species (ROS) levels. TRPML1 is a lysosomal ROS-sensitive Ca2+ channel that regulates lysosomal trafficking and biogenesis. Small-molecule agonists of TRPML1 prevented PA-induced mitochondrial damage and ROS elevation through activation of transcriptional factor EB (TFEB), which boosts lysosome biogenesis and mitophagy. Whereas genetically silencing TRPML1 abolished the protective effects of TRPML1 agonism, TRPML1 overexpression conferred a full resistance to PA-induced oxidative damage. Pharmacologically activating the TRPML1-TFEB pathway was sufficient to restore mitochondrial and redox homeostasis in SFA-damaged endothelial cells. The present results suggest that lysosome activation represents a viable strategy for alleviating oxidative damage, a common pathogenic mechanism of metabolic and age-related diseases.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"224 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arrayed CRISPRi library to suppress genes required for Schizosaccharomyces pombe viability. 通过 CRISPRi 文库阵列抑制小鼠酵母生存所需的基因。
IF 7.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-06 Epub Date: 2024-10-08 DOI: 10.1083/jcb.202404085
Ken Ishikawa, Saeko Soejima, Takashi Nishimura, Shigeaki Saitoh

The fission yeast, Schizosaccharomyces pombe, is an excellent eukaryote model organism for studying essential biological processes. Its genome contains ∼1,200 genes essential for cell viability, most of which are evolutionarily conserved. To study these essential genes, resources enabling conditional perturbation of target genes are required. Here, we constructed comprehensive arrayed libraries of plasmids and strains to knock down essential genes in S. pombe using dCas9-mediated CRISPRi. These libraries cover ∼98% of all essential genes in fission yeast. We estimate that in ∼60% of these strains, transcription of a target gene was repressed so efficiently that cell proliferation was significantly inhibited. To demonstrate the usefulness of these libraries, we performed metabolic analyses with knockdown strains and revealed flexible interaction among metabolic pathways. Libraries established in this study enable comprehensive functional analyses of essential genes in S. pombe and will facilitate the understanding of essential biological processes in eukaryotes.

裂殖酵母(Schizosaccharomyces pombe)是研究重要生物过程的极佳真核模式生物。它的基因组包含 1200 个对细胞存活至关重要的基因,其中大部分基因在进化过程中保持不变。要研究这些重要基因,需要能对目标基因进行条件扰动的资源。在这里,我们构建了质粒和菌株的综合阵列文库,利用 dCas9 介导的 CRISPRi 敲除 S. pombe 中的重要基因。这些文库涵盖了裂变酵母中98%的重要基因。我们估计,在这些菌株中,有 60% 的目标基因转录被有效抑制,从而显著抑制了细胞增殖。为了证明这些文库的实用性,我们对基因敲除菌株进行了代谢分析,发现代谢途径之间存在灵活的相互作用。这项研究建立的基因库能够对 S. pombe 中的重要基因进行全面的功能分析,并将促进对真核生物重要生物过程的了解。
{"title":"Arrayed CRISPRi library to suppress genes required for Schizosaccharomyces pombe viability.","authors":"Ken Ishikawa, Saeko Soejima, Takashi Nishimura, Shigeaki Saitoh","doi":"10.1083/jcb.202404085","DOIUrl":"10.1083/jcb.202404085","url":null,"abstract":"<p><p>The fission yeast, Schizosaccharomyces pombe, is an excellent eukaryote model organism for studying essential biological processes. Its genome contains ∼1,200 genes essential for cell viability, most of which are evolutionarily conserved. To study these essential genes, resources enabling conditional perturbation of target genes are required. Here, we constructed comprehensive arrayed libraries of plasmids and strains to knock down essential genes in S. pombe using dCas9-mediated CRISPRi. These libraries cover ∼98% of all essential genes in fission yeast. We estimate that in ∼60% of these strains, transcription of a target gene was repressed so efficiently that cell proliferation was significantly inhibited. To demonstrate the usefulness of these libraries, we performed metabolic analyses with knockdown strains and revealed flexible interaction among metabolic pathways. Libraries established in this study enable comprehensive functional analyses of essential genes in S. pombe and will facilitate the understanding of essential biological processes in eukaryotes.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"224 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465072/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetochores grip microtubules with directionally asymmetric strength. 动芯以方向不对称的力量抓住微管。
IF 7.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-06 Epub Date: 2024-11-01 DOI: 10.1083/jcb.202405176
Joshua D Larson, Natalie A Heitkamp, Lucas E Murray, Andrew R Popchock, Sue Biggins, Charles L Asbury

For accurate mitosis, all chromosomes must achieve "biorientation," with replicated sister chromatids coupled via kinetochores to the plus ends of opposing microtubules. However, kinetochores first bind the sides of microtubules and subsequently find plus ends through a trial-and-error process; accurate biorientation depends on the selective release of erroneous attachments. Proposed mechanisms for error-correction have focused mainly on plus-end attachments. Whether erroneous side attachments are distinguished from correct side attachments is unknown. Here, we show that side-attached kinetochores are very sensitive to microtubule polarity, gripping sixfold more strongly when pulled toward plus versus minus ends. This directionally asymmetric grip is conserved in human and yeast subcomplexes, and it correlates with changes in the axial arrangement of subcomplexes within the kinetochore, suggesting that internal architecture dictates attachment strength. We propose that the kinetochore's directional grip promotes accuracy during early mitosis by stabilizing correct attachments even before both sisters have found plus ends.

为了实现准确的有丝分裂,所有染色体都必须实现 "生物定向",复制的姐妹染色单体通过动核与相对的微管的正端耦合。然而,动核首先与微管的两侧结合,然后通过试错过程找到正端;准确的生物定向取决于选择性地释放错误的连接。所提出的纠错机制主要集中在正端附着上。至于错误的侧附着是否能与正确的侧附着区分开来,目前还不得而知。在这里,我们发现侧附着的动核对微管极性非常敏感,当被拉向正负端时,其抓取力是负端的六倍。这种方向不对称的抓取在人类和酵母亚复合物中是保留的,它与动核内亚复合物轴向排列的变化相关,表明内部结构决定了附着强度。我们认为,在有丝分裂早期,动核的方向性抓握通过稳定正确的附着,甚至在姐妹双方都找到正端之前,就能提高附着的准确性。
{"title":"Kinetochores grip microtubules with directionally asymmetric strength.","authors":"Joshua D Larson, Natalie A Heitkamp, Lucas E Murray, Andrew R Popchock, Sue Biggins, Charles L Asbury","doi":"10.1083/jcb.202405176","DOIUrl":"10.1083/jcb.202405176","url":null,"abstract":"<p><p>For accurate mitosis, all chromosomes must achieve \"biorientation,\" with replicated sister chromatids coupled via kinetochores to the plus ends of opposing microtubules. However, kinetochores first bind the sides of microtubules and subsequently find plus ends through a trial-and-error process; accurate biorientation depends on the selective release of erroneous attachments. Proposed mechanisms for error-correction have focused mainly on plus-end attachments. Whether erroneous side attachments are distinguished from correct side attachments is unknown. Here, we show that side-attached kinetochores are very sensitive to microtubule polarity, gripping sixfold more strongly when pulled toward plus versus minus ends. This directionally asymmetric grip is conserved in human and yeast subcomplexes, and it correlates with changes in the axial arrangement of subcomplexes within the kinetochore, suggesting that internal architecture dictates attachment strength. We propose that the kinetochore's directional grip promotes accuracy during early mitosis by stabilizing correct attachments even before both sisters have found plus ends.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"224 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ca2+ tunneling architecture and function are important for secretion. Ca2+ 隧道结构和功能对分泌非常重要。
IF 7.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-06 Epub Date: 2024-11-05 DOI: 10.1083/jcb.202402107
Raphael J Courjaret, Larry E Wagner, Rahaf R Ammouri, David I Yule, Khaled Machaca

Ca2+ tunneling requires both store-operated Ca2+ entry (SOCE) and Ca2+ release from the endoplasmic reticulum (ER). Tunneling expands the SOCE microdomain through Ca2+ uptake by SERCA into the ER lumen where it diffuses and is released via IP3 receptors. In this study, using high-resolution imaging, we outline the spatial remodeling of the tunneling machinery (IP3R1; SERCA; PMCA; and Ano1 as an effector) relative to STIM1 in response to store depletion. We show that these modulators redistribute to distinct subdomains laterally at the plasma membrane (PM) and axially within the cortical ER. To functionally define the role of Ca2+ tunneling, we engineered a Ca2+ tunneling attenuator (CaTAr) that blocks tunneling without affecting Ca2+ release or SOCE. CaTAr inhibits Cl- secretion in sweat gland cells and reduces sweating in vivo in mice, showing that Ca2+ tunneling is important physiologically. Collectively our findings argue that Ca2+ tunneling is a fundamental Ca2+ signaling modality.

Ca2+ 隧道需要储存操作的 Ca2+ 进入(SOCE)和内质网(ER)的 Ca2+ 释放。隧道效应通过 SERCA 吸收 Ca2+ 进入 ER 管腔扩大 SOCE 微域,Ca2+ 在 ER 管腔扩散并通过 IP3 受体释放。在这项研究中,我们利用高分辨率成像技术,概述了隧道机制(IP3R1、SERCA、PMCA 和作为效应器的 Ano1)相对于 STIM1 的空间重塑对储存耗竭的响应。我们的研究表明,这些调节器在质膜(PM)的横向和皮质 ER 的轴向重新分布到不同的亚域。为了从功能上确定 Ca2+ 隧道的作用,我们设计了一种 Ca2+ 隧道衰减器(CaTAr),它能阻断隧道而不影响 Ca2+ 释放或 SOCE。CaTAr 可抑制汗腺细胞中 Cl- 的分泌,并减少小鼠体内的出汗量,这表明 Ca2+ 隧道在生理上非常重要。总之,我们的研究结果证明 Ca2+ 隧道是一种基本的 Ca2+ 信号传递方式。
{"title":"Ca2+ tunneling architecture and function are important for secretion.","authors":"Raphael J Courjaret, Larry E Wagner, Rahaf R Ammouri, David I Yule, Khaled Machaca","doi":"10.1083/jcb.202402107","DOIUrl":"10.1083/jcb.202402107","url":null,"abstract":"<p><p>Ca2+ tunneling requires both store-operated Ca2+ entry (SOCE) and Ca2+ release from the endoplasmic reticulum (ER). Tunneling expands the SOCE microdomain through Ca2+ uptake by SERCA into the ER lumen where it diffuses and is released via IP3 receptors. In this study, using high-resolution imaging, we outline the spatial remodeling of the tunneling machinery (IP3R1; SERCA; PMCA; and Ano1 as an effector) relative to STIM1 in response to store depletion. We show that these modulators redistribute to distinct subdomains laterally at the plasma membrane (PM) and axially within the cortical ER. To functionally define the role of Ca2+ tunneling, we engineered a Ca2+ tunneling attenuator (CaTAr) that blocks tunneling without affecting Ca2+ release or SOCE. CaTAr inhibits Cl- secretion in sweat gland cells and reduces sweating in vivo in mice, showing that Ca2+ tunneling is important physiologically. Collectively our findings argue that Ca2+ tunneling is a fundamental Ca2+ signaling modality.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"224 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540855/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the cell biology of hippocampal neurons with dendritic axon origin. 揭示具有树突轴突起源的海马神经元的细胞生物学。
IF 7.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-06 Epub Date: 2024-11-04 DOI: 10.1083/jcb.202403141
Yuhao Han, Daniela Hacker, Bronte Catharina Donders, Christopher Parperis, Roland Thuenauer, Christophe Leterrier, Kay Grünewald, Marina Mikhaylova

In mammalian axon-carrying-dendrite (AcD) neurons, the axon emanates from a basal dendrite, instead of the soma, to create a privileged route for action potential generation at the axon initial segment (AIS). However, it is unclear how such unusual morphology is established and whether the structure and function of the AIS in AcD neurons are preserved. By using dissociated hippocampal cultures as a model, we show that the development of AcD morphology can occur prior to synaptogenesis and independently of the in vivo environment. A single precursor neurite first gives rise to the axon and then to the AcD. The AIS possesses a similar cytoskeletal architecture as the soma-derived AIS and similarly functions as a trafficking barrier to retain axon-specific molecular composition. However, it does not undergo homeostatic plasticity, contains lesser cisternal organelles, and receives fewer inhibitory inputs. Our findings reveal insights into AcD neuron biology and underscore AIS structural differences based on axon onset.

在哺乳动物的轴突携带树突(AcD)神经元中,轴突从基部树突而不是从体部发出,从而在轴突起始节段(AIS)为动作电位的产生创造了一条特殊的途径。然而,目前还不清楚这种不寻常的形态是如何形成的,也不清楚AcD神经元的AIS结构和功能是否得以保留。通过使用离体海马培养物作为模型,我们证明 AcD 形态的形成可以发生在突触发生之前,并且不受体内环境的影响。单个前体神经元首先产生轴突,然后产生AcD。AIS具有与源于体细胞的AIS相似的细胞骨架结构,并具有类似的贩运屏障功能,以保留轴突特异性分子组成。但是,它不会发生同态可塑性,含有较少的纤毛细胞器,接受的抑制性输入也较少。我们的研究结果揭示了AcD神经元的生物学特性,并强调了轴突起始阶段的AIS结构差异。
{"title":"Unveiling the cell biology of hippocampal neurons with dendritic axon origin.","authors":"Yuhao Han, Daniela Hacker, Bronte Catharina Donders, Christopher Parperis, Roland Thuenauer, Christophe Leterrier, Kay Grünewald, Marina Mikhaylova","doi":"10.1083/jcb.202403141","DOIUrl":"10.1083/jcb.202403141","url":null,"abstract":"<p><p>In mammalian axon-carrying-dendrite (AcD) neurons, the axon emanates from a basal dendrite, instead of the soma, to create a privileged route for action potential generation at the axon initial segment (AIS). However, it is unclear how such unusual morphology is established and whether the structure and function of the AIS in AcD neurons are preserved. By using dissociated hippocampal cultures as a model, we show that the development of AcD morphology can occur prior to synaptogenesis and independently of the in vivo environment. A single precursor neurite first gives rise to the axon and then to the AcD. The AIS possesses a similar cytoskeletal architecture as the soma-derived AIS and similarly functions as a trafficking barrier to retain axon-specific molecular composition. However, it does not undergo homeostatic plasticity, contains lesser cisternal organelles, and receives fewer inhibitory inputs. Our findings reveal insights into AcD neuron biology and underscore AIS structural differences based on axon onset.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"224 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536041/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ER export via SURF4 uses diverse mechanisms of both client and coat engagement. 通过 SURF4 输出的 ER 采用了客户和外衣参与的多种机制。
IF 7.4 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-01-06 Epub Date: 2024-11-12 DOI: 10.1083/jcb.202406103
Julija Maldutyte, Xiao-Han Li, Natalia Gomez-Navarro, Evan G Robertson, Elizabeth A Miller

Protein secretion is an essential process that drives cell growth and communication. Enrichment of soluble secretory proteins into ER-derived transport carriers occurs via transmembrane cargo receptors that connect lumenal cargo to the cytosolic COPII coat. Here, we find that the cargo receptor, SURF4, recruits different SEC24 cargo adaptor paralogs of the COPII coat to export different cargoes. The secreted protease, PCSK9, requires both SURF4 and a co-receptor, TMED10, for export via SEC24A. In contrast, secretion of Cab45 and NUCB1 requires SEC24C/D. We further show that ER export signals of Cab45 and NUCB1 bind co-translationally to SURF4 via a lumenal pocket, contrasting prevailing models of receptor engagement only upon protein folding/maturation. Bioinformatics analyses suggest that strong SURF4-binding motifs are features of proteases, receptor-binding ligands, and Ca2+-binding proteins. We propose that certain classes of proteins are fast-tracked for rapid export to protect the health of the ER lumen.

蛋白质分泌是驱动细胞生长和交流的重要过程。可溶性分泌蛋白通过跨膜货物受体富集到ER衍生的运输载体中,这些受体将腔内货物与细胞膜COPII外皮连接起来。在这里,我们发现货物受体 SURF4 会招募 COPII 衣壳的不同 SEC24 货物适配器旁系亲属来输出不同的货物。分泌蛋白酶 PCSK9 需要 SURF4 和共受体 TMED10 才能通过 SEC24A 输出。相反,Cab45和NUCB1的分泌则需要SEC24C/D。我们进一步发现,Cab45和NUCB1的ER出口信号通过一个腔袋与SURF4进行共翻译结合,这与受体仅在蛋白质折叠/成熟时才参与的流行模式形成了鲜明对比。生物信息学分析表明,强 SURF4 结合基团是蛋白酶、受体结合配体和 Ca2+ 结合蛋白的特征。我们提出,某些类别的蛋白质会被快速导出,以保护ER腔的健康。
{"title":"ER export via SURF4 uses diverse mechanisms of both client and coat engagement.","authors":"Julija Maldutyte, Xiao-Han Li, Natalia Gomez-Navarro, Evan G Robertson, Elizabeth A Miller","doi":"10.1083/jcb.202406103","DOIUrl":"10.1083/jcb.202406103","url":null,"abstract":"<p><p>Protein secretion is an essential process that drives cell growth and communication. Enrichment of soluble secretory proteins into ER-derived transport carriers occurs via transmembrane cargo receptors that connect lumenal cargo to the cytosolic COPII coat. Here, we find that the cargo receptor, SURF4, recruits different SEC24 cargo adaptor paralogs of the COPII coat to export different cargoes. The secreted protease, PCSK9, requires both SURF4 and a co-receptor, TMED10, for export via SEC24A. In contrast, secretion of Cab45 and NUCB1 requires SEC24C/D. We further show that ER export signals of Cab45 and NUCB1 bind co-translationally to SURF4 via a lumenal pocket, contrasting prevailing models of receptor engagement only upon protein folding/maturation. Bioinformatics analyses suggest that strong SURF4-binding motifs are features of proteases, receptor-binding ligands, and Ca2+-binding proteins. We propose that certain classes of proteins are fast-tracked for rapid export to protect the health of the ER lumen.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"224 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557686/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterogeneity of late endosome/lysosomes shown by multiplexed DNA-PAINT imaging. 多重 DNA-PAINT 成像显示晚期内膜体/溶酶体的异质性。
IF 7.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-06 Epub Date: 2024-11-01 DOI: 10.1083/jcb.202403116
Charles Bond, Siewert Hugelier, Jiazheng Xing, Elena M Sorokina, Melike Lakadamyali

Late endosomes/lysosomes (LELs) are crucial for numerous physiological processes and their dysfunction is linked to many diseases. Proteomic analyses have identified hundreds of LEL proteins; however, whether these proteins are uniformly present on each LEL, or if there are cell-type-dependent LEL subpopulations with unique protein compositions is unclear. We employed quantitative, multiplexed DNA-PAINT super-resolution imaging to examine the distribution of seven key LEL proteins (LAMP1, LAMP2, CD63, Cathepsin D, TMEM192, NPC1, and LAMTOR4). While LAMP1, LAMP2, and Cathepsin D were abundant across LELs, marking a common population, most analyzed proteins were associated with specific LEL subpopulations. Our multiplexed imaging approach identified up to eight different LEL subpopulations based on their unique membrane protein composition. Additionally, our analysis of the spatial relationships between these subpopulations and mitochondria revealed a cell-type-specific tendency for NPC1-positive LELs to be closely positioned to mitochondria. Our approach will be broadly applicable to determining organelle heterogeneity with single organelle resolution in many biological contexts.

晚期内体/溶酶体(LELs)对许多生理过程至关重要,其功能障碍与许多疾病有关。蛋白质组学分析已鉴定出数百种 LEL 蛋白;然而,这些蛋白质是否均匀地存在于每个 LEL 上,或者是否存在具有独特蛋白质组成的细胞类型依赖性 LEL 亚群,目前还不清楚。我们采用定量、多重 DNA-PAINT 超分辨率成像技术研究了七种关键 LEL 蛋白(LAMP1、LAMP2、CD63、Cathepsin D、TMEM192、NPC1 和 LAMTOR4)的分布情况。虽然 LAMP1、LAMP2 和 Cathepsin D 在 LEL 中含量丰富,标志着一个共同的群体,但大多数分析的蛋白质都与特定的 LEL 亚群相关。我们的多重成像方法根据 LEL 独特的膜蛋白组成确定了多达八个不同的 LEL 亚群。此外,我们对这些亚群与线粒体之间空间关系的分析表明,NPC1 阳性的 LEL 与线粒体的位置密切相关,这是一种细胞类型特异性趋势。我们的方法将广泛适用于在许多生物环境中以单个细胞器分辨率确定细胞器的异质性。
{"title":"Heterogeneity of late endosome/lysosomes shown by multiplexed DNA-PAINT imaging.","authors":"Charles Bond, Siewert Hugelier, Jiazheng Xing, Elena M Sorokina, Melike Lakadamyali","doi":"10.1083/jcb.202403116","DOIUrl":"10.1083/jcb.202403116","url":null,"abstract":"<p><p>Late endosomes/lysosomes (LELs) are crucial for numerous physiological processes and their dysfunction is linked to many diseases. Proteomic analyses have identified hundreds of LEL proteins; however, whether these proteins are uniformly present on each LEL, or if there are cell-type-dependent LEL subpopulations with unique protein compositions is unclear. We employed quantitative, multiplexed DNA-PAINT super-resolution imaging to examine the distribution of seven key LEL proteins (LAMP1, LAMP2, CD63, Cathepsin D, TMEM192, NPC1, and LAMTOR4). While LAMP1, LAMP2, and Cathepsin D were abundant across LELs, marking a common population, most analyzed proteins were associated with specific LEL subpopulations. Our multiplexed imaging approach identified up to eight different LEL subpopulations based on their unique membrane protein composition. Additionally, our analysis of the spatial relationships between these subpopulations and mitochondria revealed a cell-type-specific tendency for NPC1-positive LELs to be closely positioned to mitochondria. Our approach will be broadly applicable to determining organelle heterogeneity with single organelle resolution in many biological contexts.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"224 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533445/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 ACS Chem. Biol. ACS Synth. Biol. J. Nat. Prod. J PROTEOME RES Integr. Biol. Metallomics Aging Cell Biol. Rev. ChemBioChem Environ. Microbiol. Rep. Evol. Appl. J. Integr. Plant Biol. Mol. Ecol. Mol. Ecol. Resour. New Phytol. Plant Biol. Proteomics Res. Synth. Methods Wildl. Monogr. Biochimie Cell Chem. Biol. Chem. Phys. Lipids Curr. Opin. Chem. Biol. J. Inorg. Biochem. J. Mol. Biol. Methods Phys. Life Rev. Trends Biochem. Sci Appl. Biochem. Microbiol. Biochem. Genet. BIOCHEMISTRY-MOSCOW+ Biometals BIOMOL NMR ASSIGN Cell Biochem. Biophys. Dokl. Biochem. Biophys. FUNCT INTEGR GENOMIC J. Biol. Phys. J. Biomol. NMR J. Comput.-Aided Mol. Des. J. Mol. Histol. Mar. Biotechnol. Phytochem. Rev. ACTA ETHOL ACTA HISTOCHEM CYTOC ACTA CRYSTALLOGR D ACTA BOT BRAS Acta Histochem. ACTA BOT CROAT ACTA PHYSIOL PLANT Acta Biochim. Biophys. Sin. Acta Biochim. Pol. ACTA NATURAE ACTA CRYSTALLOGR F Acta Biotheor. ACTA CRYSTALLOGR D ACTA MICROBIOL IMM H ACTA SOC BOT POL ADIPOCYTE Advanced biology ADV BOT RES Adv. Appl. Microbiol. ACTA CRYSTALLOGR F ADV PROTEIN CHEM STR Am. J. Med. Genet. Part A AM J PHYSIOL-CELL PH ALGAE-SEOUL Am. J. Hum. Genet. Am. J. Primatol. Am. J. Bot. Afr. J. Mar. Sci. Am. Malacol. Bull. Anim. Cells Syst Amino Acids Anal. Biochem. ALGAL RES ANIM BIOL Anim. Cognit. Anim. Genet. Annu. Rev. Cell Dev. Biol. Annu. Rev. Microbiol. Annu. Rev. Biochem. ANNU REV ECOL EVOL S Appl. Environ. Microbiol. Antioxid. Redox Signaling Appl. Plant Sci. Ann. Bot. Annu. Rev. Genet. ANAEROBE APOPTOSIS Ann. Microbiol. Ann. Hum. Genet. AQUAT BIOL ARCH BIOL SCI Arch. Biochem. Biophys. Aquat. Mamm. Annu. Rev. Genomics Hum. Genet. Aquat. Bot. Arch. Microbiol. Annu. Rev. Plant Biol. Aust. J. Bot.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1