首页 > 最新文献

ACS Publications最新文献

英文 中文
IF:
Last Honors and Life Experiences of Bereaved Families in the Context of COVID-19 in Kashmir: A Qualitative Inquiry About Exclusion, Family Trauma, and Other Issues. 2019冠状病毒病(COVID-19)背景下,克什米尔丧失亲人家庭最后的荣誉和生活经历:关于排斥、家庭创伤和其他问题的定性调查
IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-05-01 Epub Date: 2022-10-26 DOI: 10.1177/00302228221134205
Tanveer Ahmad Khan, Abdul Mohsin, Sumiya Din, Shaista Qayum, Irfanullah Farooqi

This study examined the changing character of the last honours of those who died of COVID-19 in Kashmir and the life experiences of the families of the deceased. A semi-structured interview schedule was used to collect information from 21 participants. Using qualitative data analysis approaches, five key themes were identified vis-à-vis the impact of COVID-19 on burial rituals and customs; effects on bereaved families, shades of grief, bereavement care, community response, and coping with loss. Based on examining the pandemic-induced changes related to customs and rituals around death, the study found that the bereaved family members were in danger of marginalization, economic burdens, psychological traumas, and overall reduced quality of life. This study would be a credible addition to the existing literature on death practices as there is a shortage of research on funeral rituals during the post-pandemic period in Kashmir.

本研究考察了克什米尔地区COVID-19死者最后荣誉的变化特征以及死者家属的生活经历。采用半结构化访谈时间表收集21名参与者的信息。利用定性数据分析方法,确定了以下五个关键主题:-à-vis COVID-19对葬礼仪式和习俗的影响;对失去亲人的家庭的影响,悲伤的阴影,丧亲护理,社区反应,以及应对损失。根据对流行病引起的与死亡有关的习俗和仪式的变化的调查,该研究发现,失去亲人的家庭成员面临边缘化、经济负担、心理创伤和总体生活质量下降的危险。这项研究将是对现有关于死亡习俗的文献的可靠补充,因为对克什米尔大流行后时期的葬礼仪式缺乏研究。
{"title":"Last Honors and Life Experiences of Bereaved Families in the Context of COVID-19 in Kashmir: A Qualitative Inquiry About Exclusion, Family Trauma, and Other Issues.","authors":"Tanveer Ahmad Khan, Abdul Mohsin, Sumiya Din, Shaista Qayum, Irfanullah Farooqi","doi":"10.1177/00302228221134205","DOIUrl":"10.1177/00302228221134205","url":null,"abstract":"<p><p>This study examined the changing character of the last honours of those who died of COVID-19 in Kashmir and the life experiences of the families of the deceased. A semi-structured interview schedule was used to collect information from 21 participants. Using qualitative data analysis approaches, five key themes were identified vis-à-vis the impact of COVID-19 on burial rituals and customs; effects on bereaved families, shades of grief, bereavement care, community response, and coping with loss. Based on examining the pandemic-induced changes related to customs and rituals around death, the study found that the bereaved family members were in danger of marginalization, economic burdens, psychological traumas, and overall reduced quality of life. This study would be a credible addition to the existing literature on death practices as there is a shortage of research on funeral rituals during the post-pandemic period in Kashmir.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"361-382"},"PeriodicalIF":16.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42358876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Synthesis of a New Cobalt(II) Complex Compound Containing 2,2′-Bipyridyl Ligand and Its Catalytic Properties in the Formation of CO2-Sorbing Oligomers (Eur. J. Inorg. Chem. 11/2025)
IF 2.2 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2025-04-11 DOI: 10.1002/ejic.202581101
Marta Pawlak, Joanna Drzeżdżon, Anna Gołąbiewska, Katarzyna N. Jarzembska, Radosław Kamiński, Tomasz Pospieszny, Janusz Datta, Dagmara Jacewicz

The Front Cover shows the synthesis of a new cobalt(II) coordination compound containing two 2,2′-bipyridyl ligands, a water molecule and, most interestingly, a sulfate(VI) anion in the coordination sphere. In addition, the newly presented compound [Co(bipy)2(SO4)(H2O)] is perfectly suited as a catalyst in the oligomerization of olefins and leads to the synthesis of oligomers with unique physicochemical properties. More information can be found in the Research Article by M. Pawlak, D. Jacewicz and co-workers (DOI: 10.1002/ejic.202400755).

{"title":"Front Cover: Synthesis of a New Cobalt(II) Complex Compound Containing 2,2′-Bipyridyl Ligand and Its Catalytic Properties in the Formation of CO2-Sorbing Oligomers (Eur. J. Inorg. Chem. 11/2025)","authors":"Marta Pawlak,&nbsp;Joanna Drzeżdżon,&nbsp;Anna Gołąbiewska,&nbsp;Katarzyna N. Jarzembska,&nbsp;Radosław Kamiński,&nbsp;Tomasz Pospieszny,&nbsp;Janusz Datta,&nbsp;Dagmara Jacewicz","doi":"10.1002/ejic.202581101","DOIUrl":"https://doi.org/10.1002/ejic.202581101","url":null,"abstract":"<p><b>The Front Cover</b> shows the synthesis of a new cobalt(II) coordination compound containing two 2,2′-bipyridyl ligands, a water molecule and, most interestingly, a sulfate(VI) anion in the coordination sphere. In addition, the newly presented compound [Co(bipy)<sub>2</sub>(SO<sub>4</sub>)(H<sub>2</sub>O)] is perfectly suited as a catalyst in the oligomerization of olefins and leads to the synthesis of oligomers with unique physicochemical properties. More information can be found in the Research Article by M. Pawlak, D. Jacewicz and co-workers (DOI: 10.1002/ejic.202400755).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"28 11","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejic.202581101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143822234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computation of Protein-Ligand Binding Free Energies with a Quantum Mechanics-Based Mining Minima Algorithm.
IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-04-09 DOI: 10.1021/acs.jctc.4c01707
Megan Schlinsog, Tosaporn Sattasathuchana, Peng Xu, Emilie B Guidez, Michael K Gilson, Michael J Potter, Mark S Gordon, Simon P Webb
<p><p>A new method, protein-ligand QM-VM2 (PLQM-VM2), to calculate protein-ligand binding free energies by combining mining minima, a statistical mechanics end-point-based approach, with quantum mechanical potentials is presented. PLQM-VM2 is described in terms of a highly flexible workflow that is initiated from a Protein Data Bank (PDB) file and a chemical structure data file (SD file) containing two-dimensional (2D) or three-dimensional (3D) ligand series coordinates. The workflow utilizes the previously developed molecular mechanics (MM) implementation of the second-generation mining minima method, MM-VM2, to provide ensembles of protein, free ligand, and protein-ligand conformers, which are postprocessed at chosen levels of QM theory, via the quantum chemistry software package GAMESS, to correct MM-based conformer geometries and electronic energies. The corrected energies are used in the calculation of configuration integrals, which on summation over the conformer ensembles give QM-corrected chemical potentials and ultimately QM-corrected binding free energies. In this work, PLQM-VM2 is applied to three benchmark protein-ligand series: HIV-1 protease/38 ligands, c-Met/24 ligands, and TNKS2/27 ligands. QM corrections are carried out at the semiempirical third-order density functional tight-binding level of theory, augmented with dispersion and damping corrections (DFTB3-D3(BJ)H). Bulk solvation effects are accounted for with the conductor-like polarizable continuum model (PCM). DFTB3-D3(BJ)H/PCM single-point energy-only and geometry optimization QM corrections are carried out in conjunction with two different models that address the large computational scaling associated with protein-sized molecular systems. One is a protein cutout model, whereby a set of protein atoms in and around the binding site are carved out, dangling bonds are capped with hydrogens, and only atoms directly in the protein binding site are mobile along with the ligand atoms. The other model is the Fragment Molecular Orbital (FMO) method, which includes the whole protein system but again only allows the binding site and ligand atoms to be mobile. All four of these methodological approaches to QM corrections provide significant improvement over MM-VM2 in terms of rank order and parametric linear correlation with experimentally determined binding affinities. Overall, FMO with geometry optimizations performed the best, but the much cheaper cutout single-point energy approach still provides a good level of accuracy. Furthermore, a clear result is that the PLQM-VM2 calculated binding free energies for the three diverse test systems in this work are, in contrast to those calculated using MM-VM2, directly comparable in energy scale. This suggests a basis for future development of a PLQM-VM2-based multiprotein screening capability to check for off-target activity of ligand series. Benchmark timings on a single compute node (32 CPU cores) for PLQM-VM2 calculation of the chemical p
{"title":"Computation of Protein-Ligand Binding Free Energies with a Quantum Mechanics-Based Mining Minima Algorithm.","authors":"Megan Schlinsog, Tosaporn Sattasathuchana, Peng Xu, Emilie B Guidez, Michael K Gilson, Michael J Potter, Mark S Gordon, Simon P Webb","doi":"10.1021/acs.jctc.4c01707","DOIUrl":"https://doi.org/10.1021/acs.jctc.4c01707","url":null,"abstract":"&lt;p&gt;&lt;p&gt;A new method, protein-ligand QM-VM2 (PLQM-VM2), to calculate protein-ligand binding free energies by combining mining minima, a statistical mechanics end-point-based approach, with quantum mechanical potentials is presented. PLQM-VM2 is described in terms of a highly flexible workflow that is initiated from a Protein Data Bank (PDB) file and a chemical structure data file (SD file) containing two-dimensional (2D) or three-dimensional (3D) ligand series coordinates. The workflow utilizes the previously developed molecular mechanics (MM) implementation of the second-generation mining minima method, MM-VM2, to provide ensembles of protein, free ligand, and protein-ligand conformers, which are postprocessed at chosen levels of QM theory, via the quantum chemistry software package GAMESS, to correct MM-based conformer geometries and electronic energies. The corrected energies are used in the calculation of configuration integrals, which on summation over the conformer ensembles give QM-corrected chemical potentials and ultimately QM-corrected binding free energies. In this work, PLQM-VM2 is applied to three benchmark protein-ligand series: HIV-1 protease/38 ligands, c-Met/24 ligands, and TNKS2/27 ligands. QM corrections are carried out at the semiempirical third-order density functional tight-binding level of theory, augmented with dispersion and damping corrections (DFTB3-D3(BJ)H). Bulk solvation effects are accounted for with the conductor-like polarizable continuum model (PCM). DFTB3-D3(BJ)H/PCM single-point energy-only and geometry optimization QM corrections are carried out in conjunction with two different models that address the large computational scaling associated with protein-sized molecular systems. One is a protein cutout model, whereby a set of protein atoms in and around the binding site are carved out, dangling bonds are capped with hydrogens, and only atoms directly in the protein binding site are mobile along with the ligand atoms. The other model is the Fragment Molecular Orbital (FMO) method, which includes the whole protein system but again only allows the binding site and ligand atoms to be mobile. All four of these methodological approaches to QM corrections provide significant improvement over MM-VM2 in terms of rank order and parametric linear correlation with experimentally determined binding affinities. Overall, FMO with geometry optimizations performed the best, but the much cheaper cutout single-point energy approach still provides a good level of accuracy. Furthermore, a clear result is that the PLQM-VM2 calculated binding free energies for the three diverse test systems in this work are, in contrast to those calculated using MM-VM2, directly comparable in energy scale. This suggests a basis for future development of a PLQM-VM2-based multiprotein screening capability to check for off-target activity of ligand series. Benchmark timings on a single compute node (32 CPU cores) for PLQM-VM2 calculation of the chemical p","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143810000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-Hermitian Hamiltonian Approach for Two-Dimensional Coherent Spectra of Driven Systems.
IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-04-09 DOI: 10.1021/acs.jctc.4c01737
Hao-Yue Zhang, Yi-Xuan Yao, Bin-Yao Huang, Jing-Yi-Ran Jin, Qing Ai

Two-dimensional coherent spectroscopy (2DCS) offers significant advantages in terms of high temporal and frequency resolutions and a signal-to-noise ratio. Until now, the response-function (RF) formalism has been the prevalent theoretical description. In this study, we compare the non-Hermitian Hamiltonian (NHH) method with the RF formalism in a three-level system with a constant control field. We obtain the signals from both approaches and compare their population dynamics and 2DCS. We propose quasi-Green functions for the NHH method, which allows all dominant Liouville paths to be inferred. We further simulated the 2DCS of Rh(CO)2C5H7O2 (RDC) dissolved in hexane with the NHH method, which is in good agreement with the previous experiments. Although the NHH method overestimates relaxations, it provides all important paths by analytical solutions, which are different from the four paths used in the RF formalism. Our results demonstrate that the NHH method is more suitable than the RF formalism for investigating the systems, including relaxation and control fields via the 2DCS.

{"title":"Non-Hermitian Hamiltonian Approach for Two-Dimensional Coherent Spectra of Driven Systems.","authors":"Hao-Yue Zhang, Yi-Xuan Yao, Bin-Yao Huang, Jing-Yi-Ran Jin, Qing Ai","doi":"10.1021/acs.jctc.4c01737","DOIUrl":"https://doi.org/10.1021/acs.jctc.4c01737","url":null,"abstract":"<p><p>Two-dimensional coherent spectroscopy (2DCS) offers significant advantages in terms of high temporal and frequency resolutions and a signal-to-noise ratio. Until now, the response-function (RF) formalism has been the prevalent theoretical description. In this study, we compare the non-Hermitian Hamiltonian (NHH) method with the RF formalism in a three-level system with a constant control field. We obtain the signals from both approaches and compare their population dynamics and 2DCS. We propose quasi-Green functions for the NHH method, which allows all dominant Liouville paths to be inferred. We further simulated the 2DCS of Rh(CO)<sub>2</sub>C<sub>5</sub>H<sub>7</sub>O<sub>2</sub> (RDC) dissolved in hexane with the NHH method, which is in good agreement with the previous experiments. Although the NHH method overestimates relaxations, it provides all important paths by analytical solutions, which are different from the four paths used in the RF formalism. Our results demonstrate that the NHH method is more suitable than the RF formalism for investigating the systems, including relaxation and control fields via the 2DCS.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143810013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteomic Insights into the Adaptation of Acidithiobacillus ferridurans to Municipal Solid Waste Incineration Residues for Enhanced Bioleaching Efficiency.
IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-04-09 DOI: 10.1021/acs.jproteome.4c00527
Jiri Kucera, Klemens Kremser, Pavel Bouchal, David Potesil, Tomas Vaculovic, Dalibor Vsiansky, Georg M Guebitz, Martin Mandl

Acidithiobacillus spp. have traditionally been utilized to extract metals from mineral ores through bioleaching. This process has recently expanded to include artificial ores, such as those derived from municipal solid waste incineration (MSWI) residues. Previous studies have indicated that microbial adaptation enhances bioleaching efficiency, prompting this study to identify proteins involved in the adaptation of A. ferridurans to MSWI residues. We employed data-independent acquisition-parallel accumulation serial fragmentation to determine the proteomic response of A. ferridurans DSM 583 to three distinct materials: bottom ash (BA), kettle ash (KA), and filter ash (FA), which represent typical MSWI residues. Our findings indicate that, irrespective of the residue type, a suite of membrane transporters, porins, efflux pumps, and specific electron and cation transfer proteins was notably upregulated. The upregulation of certain proteins involved in anaerobic pathways suggested the development of a spontaneous microaerobic environment, which minimally impacted the bioleaching efficiency. Additionally, the adaptation was most efficient at half the target FA concentration, marked by a significant increase in the detoxification and efflux systems required by microorganisms to tolerate high heavy metal concentrations. Given that metal recovery peaked at lower FA concentrations for most metals of interest, further adaptation at the level of protein expression may not be warranted for improved bioleaching outcomes.

{"title":"Proteomic Insights into the Adaptation of <i>Acidithiobacillus ferridurans</i> to Municipal Solid Waste Incineration Residues for Enhanced Bioleaching Efficiency.","authors":"Jiri Kucera, Klemens Kremser, Pavel Bouchal, David Potesil, Tomas Vaculovic, Dalibor Vsiansky, Georg M Guebitz, Martin Mandl","doi":"10.1021/acs.jproteome.4c00527","DOIUrl":"https://doi.org/10.1021/acs.jproteome.4c00527","url":null,"abstract":"<p><p><i>Acidithiobacillus</i> spp. have traditionally been utilized to extract metals from mineral ores through bioleaching. This process has recently expanded to include artificial ores, such as those derived from municipal solid waste incineration (MSWI) residues. Previous studies have indicated that microbial adaptation enhances bioleaching efficiency, prompting this study to identify proteins involved in the adaptation of <i>A. ferridurans</i> to MSWI residues. We employed data-independent acquisition-parallel accumulation serial fragmentation to determine the proteomic response of <i>A. ferridurans</i> DSM 583 to three distinct materials: bottom ash (BA), kettle ash (KA), and filter ash (FA), which represent typical MSWI residues. Our findings indicate that, irrespective of the residue type, a suite of membrane transporters, porins, efflux pumps, and specific electron and cation transfer proteins was notably upregulated. The upregulation of certain proteins involved in anaerobic pathways suggested the development of a spontaneous microaerobic environment, which minimally impacted the bioleaching efficiency. Additionally, the adaptation was most efficient at half the target FA concentration, marked by a significant increase in the detoxification and efflux systems required by microorganisms to tolerate high heavy metal concentrations. Given that metal recovery peaked at lower FA concentrations for most metals of interest, further adaptation at the level of protein expression may not be warranted for improved bioleaching outcomes.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143810093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Signatures in Vibrational and Vibronic Spectra of Benzene Molecular Clusters.
IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-04-09 DOI: 10.1021/acs.jpca.4c08700
Ricardo Montserrat, Amanda D Torres, Ricardo R Oliveira, Alexandre B Rocha

The photoabsorption and infrared spectra (IR) of molecular systems are heavily influenced by aggregation. In the electronic spectra, the vibronic coupling effect is of utmost importance. Although treating both effects simultaneously can be challenging, it is often the only way to explain the experimental spectrum of molecular clusters. In this work, we study IR spectra and the vibronic coupling effect in the electronic photoabsorption spectra in molecular systems composed of benzene (monomer, dimers, and crystal). Photoabsorption spectra were generated using the direct vibronic coupling method at the density functional theory (DFT) level. We also simulated the spectra with the Liouville-Lanczos approach by calculating the electronic transitions along the main inducing modes for two forbidden transitions (1A1g1B2u and 1A1g1B1u). DFT was also applied to simulate IR spectra. For the monomer, vibronic coupling was crucial to induce the first and second forbidden transitions. On the other hand, molecular aggregation was sufficient to induce the first and second forbidden transitions in almost all dimers. However, when the vibronic coupling is evaluated for the clusters, the band in the energy range of the 1A1g1B1u transition is affected both by the aggregation itself and the inducing modes. Moreover, some inducing modes drastically change the allowed 1A1g1E1u transition, depending on the dimer under study due to symmetry breaking. In terms of IR spectra, clear signatures are present. For instance, the intensities of the C-H stretching modes decrease as aggregation increases. This work shows that aggregation impacts the band shapes differently in relation to the benzene aggregate structure and the excitation under analysis.

{"title":"Signatures in Vibrational and Vibronic Spectra of Benzene Molecular Clusters.","authors":"Ricardo Montserrat, Amanda D Torres, Ricardo R Oliveira, Alexandre B Rocha","doi":"10.1021/acs.jpca.4c08700","DOIUrl":"https://doi.org/10.1021/acs.jpca.4c08700","url":null,"abstract":"<p><p>The photoabsorption and infrared spectra (IR) of molecular systems are heavily influenced by aggregation. In the electronic spectra, the vibronic coupling effect is of utmost importance. Although treating both effects simultaneously can be challenging, it is often the only way to explain the experimental spectrum of molecular clusters. In this work, we study IR spectra and the vibronic coupling effect in the electronic photoabsorption spectra in molecular systems composed of benzene (monomer, dimers, and crystal). Photoabsorption spectra were generated using the direct vibronic coupling method at the density functional theory (DFT) level. We also simulated the spectra with the Liouville-Lanczos approach by calculating the electronic transitions along the main inducing modes for two forbidden transitions (<sup>1</sup>A<sub>1g</sub> → <sup>1</sup>B<sub>2u</sub> and <sup>1</sup>A<sub>1g</sub> → <sup>1</sup>B<sub>1u</sub>). DFT was also applied to simulate IR spectra. For the monomer, vibronic coupling was crucial to induce the first and second forbidden transitions. On the other hand, molecular aggregation was sufficient to induce the first and second forbidden transitions in almost all dimers. However, when the vibronic coupling is evaluated for the clusters, the band in the energy range of the <sup>1</sup>A<sub>1g</sub> → <sup>1</sup>B<sub>1u</sub> transition is affected both by the aggregation itself and the inducing modes. Moreover, some inducing modes drastically change the allowed <sup>1</sup>A<sub>1g</sub> → <sup>1</sup>E<sub>1u</sub> transition, depending on the dimer under study due to symmetry breaking. In terms of IR spectra, clear signatures are present. For instance, the intensities of the C-H stretching modes decrease as aggregation increases. This work shows that aggregation impacts the band shapes differently in relation to the benzene aggregate structure and the excitation under analysis.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143810165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvent-Assisted CO2 Foaming Induced Ultralarge Pore Span Hierarchically Porous Polyimide.
IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-04-09 DOI: 10.1021/acsami.5c01644
Huiting Sun, Mingchao Shao, Qi Guo, Liming Tao, Jinmei Wang, Lijun Yang, Qihua Wang, Tingmei Wang, Chao Wang

Inspired by natural materials, constructing hierarchically porous composite materials can better meet the increasingly demanding needs of engineering materials. Currently, lightweight polyimide components commonly used in aerospace and deep-sea applications are difficult to combine with cross-scale pores due to limitations in performance stability and porogenic strategies. Finding an efficient, environmentally friendly, convenient, and highly controllable method to prepare hierarchically porous polyimide (HPPI) to utilize structural advantages for functional suitability remains a huge challenge. Here, we propose a solvent-assisted supercritical CO2 foaming strategy to develop ultralarge pore span polyimide (ODA-ODPA). This strategy can not only realize the construction of HPPIs, but also regulate the porosities span from 15 to 75%. The HPPI mechanical parts prepared by controlling the foaming conditions can improve the oil storage and supply capacity and reduce the material quality while maintaining excellent dimensional stability thanks to the combination of micro- and nanopore. The prepared lightweight HPPI foam also shows excellent high-temperature-resistant mechanical properties. Additionally, the versatility of this strategy has been successfully demonstrated in other thermoplastic polyimide systems. This work not only provides a new method for preparing hierarchically porous materials, but also provides more possibilities for further expanding the application areas of special engineering polymers, for example, maintenance-free components for human deep space exploration and high-temperature-resistant fall buffers.

{"title":"Solvent-Assisted CO<sub>2</sub> Foaming Induced Ultralarge Pore Span Hierarchically Porous Polyimide.","authors":"Huiting Sun, Mingchao Shao, Qi Guo, Liming Tao, Jinmei Wang, Lijun Yang, Qihua Wang, Tingmei Wang, Chao Wang","doi":"10.1021/acsami.5c01644","DOIUrl":"https://doi.org/10.1021/acsami.5c01644","url":null,"abstract":"<p><p>Inspired by natural materials, constructing hierarchically porous composite materials can better meet the increasingly demanding needs of engineering materials. Currently, lightweight polyimide components commonly used in aerospace and deep-sea applications are difficult to combine with cross-scale pores due to limitations in performance stability and porogenic strategies. Finding an efficient, environmentally friendly, convenient, and highly controllable method to prepare hierarchically porous polyimide (HPPI) to utilize structural advantages for functional suitability remains a huge challenge. Here, we propose a solvent-assisted supercritical CO<sub>2</sub> foaming strategy to develop ultralarge pore span polyimide (ODA-ODPA). This strategy can not only realize the construction of HPPIs, but also regulate the porosities span from 15 to 75%. The HPPI mechanical parts prepared by controlling the foaming conditions can improve the oil storage and supply capacity and reduce the material quality while maintaining excellent dimensional stability thanks to the combination of micro- and nanopore. The prepared lightweight HPPI foam also shows excellent high-temperature-resistant mechanical properties. Additionally, the versatility of this strategy has been successfully demonstrated in other thermoplastic polyimide systems. This work not only provides a new method for preparing hierarchically porous materials, but also provides more possibilities for further expanding the application areas of special engineering polymers, for example, maintenance-free components for human deep space exploration and high-temperature-resistant fall buffers.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143810151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery.
IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Pub Date : 2025-04-09 DOI: 10.1021/acs.jcim.4c02372
Muzammil Kabier, Nicola Gambacorta, Fulvio Ciriaco, Fabrizio Mastrolorito, Sunil Kumar, Bijo Mathew, Orazio Nicolotti

The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. Here, we present PoseidonQ (an acronym for Personal Optimization Software for Efficient Implementation and Derivation of Online QSAR), a user-friendly software solution designed to simplify the derivation of the QSAR model for drug design and discovery. PoseidonQ incorporates 22 machine learning algorithms, 17 types of molecular fingerprints, and 208 RDKit molecular descriptors and enables the quick derivation of both regression and classification models along with a calculated and easily interpretable applicability domain. Importantly, the platform is automatically linked to the latest version of the ChEMBL database, thus providing streamlined access to large amounts of curated bioactivity data. Importantly, the user is also given the option of gathering high-quality experimental data based on customizable filtering settings. Noteworthy, PoseidonQ facilitates the deployment of trained QSAR models as web-based applications through seamless integration with Streamlit Cloud and GitHub, empowering users to share, refine, and integrate models effortlessly. Interestingly, the translation of QSAR models into web-based applications makes them free accessible, portable, and ready for screening large volumes of new data without limits. By unifying data preparation, model generation, and deployment into an intuitive workflow, PoseidonQ makes advanced QSAR modeling for drug design and discovery accessible to a wide audience of researchers irrespective of their skill levels. PoseidonQ bridges the gap between complex machine learning techniques and practical drug discovery applications, enhancing the efficiency, collaboration, and adoption of QSAR approaches in modern drug discovery programs. PoseidonQ is available for Windows and Linux (ubuntu 22.04 distro) operating systems and can be downloaded for free at https://github.com/Muzatheking12/PoseidonQ.

{"title":"PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery.","authors":"Muzammil Kabier, Nicola Gambacorta, Fulvio Ciriaco, Fabrizio Mastrolorito, Sunil Kumar, Bijo Mathew, Orazio Nicolotti","doi":"10.1021/acs.jcim.4c02372","DOIUrl":"https://doi.org/10.1021/acs.jcim.4c02372","url":null,"abstract":"<p><p>The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. Here, we present PoseidonQ (an acronym for Personal Optimization Software for Efficient Implementation and Derivation of Online QSAR), a user-friendly software solution designed to simplify the derivation of the QSAR model for drug design and discovery. PoseidonQ incorporates 22 machine learning algorithms, 17 types of molecular fingerprints, and 208 RDKit molecular descriptors and enables the quick derivation of both regression and classification models along with a calculated and easily interpretable applicability domain. Importantly, the platform is automatically linked to the latest version of the ChEMBL database, thus providing streamlined access to large amounts of curated bioactivity data. Importantly, the user is also given the option of gathering high-quality experimental data based on customizable filtering settings. Noteworthy, PoseidonQ facilitates the deployment of trained QSAR models as web-based applications through seamless integration with Streamlit Cloud and GitHub, empowering users to share, refine, and integrate models effortlessly. Interestingly, the translation of QSAR models into web-based applications makes them free accessible, portable, and ready for screening large volumes of new data without limits. By unifying data preparation, model generation, and deployment into an intuitive workflow, PoseidonQ makes advanced QSAR modeling for drug design and discovery accessible to a wide audience of researchers irrespective of their skill levels. PoseidonQ bridges the gap between complex machine learning techniques and practical drug discovery applications, enhancing the efficiency, collaboration, and adoption of QSAR approaches in modern drug discovery programs. PoseidonQ is available for Windows and Linux (ubuntu 22.04 distro) operating systems and can be downloaded for free at https://github.com/Muzatheking12/PoseidonQ.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classical Preoptimization Approach for ADAPT-VQE: Maximizing the Potential of High-Performance Computing Resources to Improve Quantum Simulation of Chemical Applications.
IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-04-09 DOI: 10.1021/acs.jctc.5c00150
J Wayne Mullinax, Panagiotis G Anastasiou, Jeffrey Larson, Sophia E Economou, Norm M Tubman

The ADAPT-VQE algorithm is a promising method for generating a compact ansatz based on derivatives of the underlying cost function, and it yields accurate predictions of electronic energies for molecules. In this work, we report the implementation and performance of ADAPT-VQE with our recently developed sparse wave function circuit solver (SWCS) in terms of accuracy and efficiency for molecular systems with up to 52 spin orbitals. The SWCS can be tuned to balance computational cost and accuracy, which extends the application of ADAPT-VQE for molecular electronic structure calculations to larger basis sets and a larger number of qubits. Using this tunable feature of the SWCS, we propose an alternative optimization procedure for ADAPT-VQE to reduce the computational cost of the optimization. By preoptimizing a quantum simulation with a parametrized ansatz generated with ADAPT-VQE/SWCS, we aim to utilize the power of classical high-performance computing in order to minimize the work required on noisy intermediate-scale quantum hardware, which offers a promising path toward demonstrating quantum advantage for chemical applications.

{"title":"Classical Preoptimization Approach for ADAPT-VQE: Maximizing the Potential of High-Performance Computing Resources to Improve Quantum Simulation of Chemical Applications.","authors":"J Wayne Mullinax, Panagiotis G Anastasiou, Jeffrey Larson, Sophia E Economou, Norm M Tubman","doi":"10.1021/acs.jctc.5c00150","DOIUrl":"https://doi.org/10.1021/acs.jctc.5c00150","url":null,"abstract":"<p><p>The ADAPT-VQE algorithm is a promising method for generating a compact ansatz based on derivatives of the underlying cost function, and it yields accurate predictions of electronic energies for molecules. In this work, we report the implementation and performance of ADAPT-VQE with our recently developed sparse wave function circuit solver (SWCS) in terms of accuracy and efficiency for molecular systems with up to 52 spin orbitals. The SWCS can be tuned to balance computational cost and accuracy, which extends the application of ADAPT-VQE for molecular electronic structure calculations to larger basis sets and a larger number of qubits. Using this tunable feature of the SWCS, we propose an alternative optimization procedure for ADAPT-VQE to reduce the computational cost of the optimization. By preoptimizing a quantum simulation with a parametrized ansatz generated with ADAPT-VQE/SWCS, we aim to utilize the power of classical high-performance computing in order to minimize the work required on noisy intermediate-scale quantum hardware, which offers a promising path toward demonstrating quantum advantage for chemical applications.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Static Myoblast Loading on Protein Secretion Linked to Tenocyte Migration.
IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-04-09 DOI: 10.1021/acs.jproteome.5c00068
Junhong Li, Xin Zhou, Jialin Chen, Shaochun Zhu, Andre Mateus, Pernilla Eliasson, Paul J Kingham, Ludvig J Backman

Exercise has been shown to promote wound healing, including tendon repair. Myokines released from the exercised muscles are believed to play a significant role in this process. In our previous study, we used an in vitro coculture and loading model to demonstrate that 2% static loading of myoblasts increased the migration and proliferation of cocultured tenocytes─two crucial aspects of wound healing. IGF-1, released from myoblasts in response to 2% static loading, was identified as a contributor to the increased proliferation. However, the factors responsible for the enhanced migration remained unknown. In the current study, we subjected myoblasts in single culture conditions to 2, 5, and 10% static loading and performed proteomic analysis of the cell supernatants. Gene Ontology (GO) analysis revealed that 2% static loading induced the secretion of NBL1, C5, and EFEMP1, which is associated with cell migration and motility. Further investigation by adding exogenous recombinant proteins to human tenocytes showed that NBL1 increased tenocyte migration but not proliferation. This effect was not observed with treatments using C5 and EFEMP1.

{"title":"Impact of Static Myoblast Loading on Protein Secretion Linked to Tenocyte Migration.","authors":"Junhong Li, Xin Zhou, Jialin Chen, Shaochun Zhu, Andre Mateus, Pernilla Eliasson, Paul J Kingham, Ludvig J Backman","doi":"10.1021/acs.jproteome.5c00068","DOIUrl":"https://doi.org/10.1021/acs.jproteome.5c00068","url":null,"abstract":"<p><p>Exercise has been shown to promote wound healing, including tendon repair. Myokines released from the exercised muscles are believed to play a significant role in this process. In our previous study, we used an in vitro coculture and loading model to demonstrate that 2% static loading of myoblasts increased the migration and proliferation of cocultured tenocytes─two crucial aspects of wound healing. IGF-1, released from myoblasts in response to 2% static loading, was identified as a contributor to the increased proliferation. However, the factors responsible for the enhanced migration remained unknown. In the current study, we subjected myoblasts in single culture conditions to 2, 5, and 10% static loading and performed proteomic analysis of the cell supernatants. Gene Ontology (GO) analysis revealed that 2% static loading induced the secretion of NBL1, C5, and EFEMP1, which is associated with cell migration and motility. Further investigation by adding exogenous recombinant proteins to human tenocytes showed that NBL1 increased tenocyte migration but not proliferation. This effect was not observed with treatments using C5 and EFEMP1.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143810089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1