首页 > 最新文献

ieeexplore最新文献

英文 中文
IF:
A Clustered Routing Algorithm Based on Forwarding Mechanism Optimization 基于转发机制优化的聚类路由算法
IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-13 DOI: 10.1109/JSEN.2024.3467055
Qian Sun;Jialong Pang;Xiaoyi Wang;Zhiyao Zhao;Jing Li
Given the intrinsic low energy and high consumption characteristics of sensor nodes, it is imperative to explore strategies for achieving energy-efficient routing within wireless sensor networks (WSNs). A significant body of existing research on clustered routing algorithms for WSNs has concentrated on employing heuristic optimization algorithms to facilitate the selection of routing paths. However, once the number of sensor nodes or the deployment environment changes, the algorithm’s performance can fluctuate significantly, potentially requiring redesign and retuning. In this article, we propose the clustered routing algorithm based on forwarding mechanism optimization (CRFMO), which defines separate routing rules for intracluster and intercluster communication, providing suitable communication paths for nodes. The algorithm eschews the complex procedure of parameter tuning during the routing path selection process and contributes to expediting WSN deployment and balancing node load pressure, ultimately extending the network’s operational lifespan. Simulation outcomes reveal that, in comparison to LEACH-IACA and IMP-LEACH, the CRFMO algorithm markedly enhances energy distribution balance, equalizes the burden among nodes, sustains high network coverage over an extended period, which enhances the quality of network monitoring, and significantly extends the lifetime of the network.
鉴于传感器节点固有的低能耗和高消耗特性,探索在无线传感器网络(WSN)内实现高能效路由的策略势在必行。现有的大量 WSN 集群路由算法研究都集中在采用启发式优化算法来促进路由路径的选择。然而,一旦传感器节点的数量或部署环境发生变化,算法的性能就会大幅波动,可能需要重新设计和调整。在本文中,我们提出了基于转发机制优化的集群路由算法(CRFMO),它为集群内和集群间通信定义了不同的路由规则,为节点提供合适的通信路径。该算法避免了路由路径选择过程中复杂的参数调整程序,有助于加快 WSN 部署和平衡节点负载压力,最终延长网络的运行寿命。仿真结果表明,与 LEACH-IACA 和 IMP-LEACH 相比,CRFMO 算法明显提高了能量分布的平衡性,均衡了节点间的负担,在较长时间内保持了较高的网络覆盖,从而提高了网络监控的质量,并显著延长了网络的寿命。
{"title":"A Clustered Routing Algorithm Based on Forwarding Mechanism Optimization","authors":"Qian Sun;Jialong Pang;Xiaoyi Wang;Zhiyao Zhao;Jing Li","doi":"10.1109/JSEN.2024.3467055","DOIUrl":"https://doi.org/10.1109/JSEN.2024.3467055","url":null,"abstract":"Given the intrinsic low energy and high consumption characteristics of sensor nodes, it is imperative to explore strategies for achieving energy-efficient routing within wireless sensor networks (WSNs). A significant body of existing research on clustered routing algorithms for WSNs has concentrated on employing heuristic optimization algorithms to facilitate the selection of routing paths. However, once the number of sensor nodes or the deployment environment changes, the algorithm’s performance can fluctuate significantly, potentially requiring redesign and retuning. In this article, we propose the clustered routing algorithm based on forwarding mechanism optimization (CRFMO), which defines separate routing rules for intracluster and intercluster communication, providing suitable communication paths for nodes. The algorithm eschews the complex procedure of parameter tuning during the routing path selection process and contributes to expediting WSN deployment and balancing node load pressure, ultimately extending the network’s operational lifespan. Simulation outcomes reveal that, in comparison to LEACH-IACA and IMP-LEACH, the CRFMO algorithm markedly enhances energy distribution balance, equalizes the burden among nodes, sustains high network coverage over an extended period, which enhances the quality of network monitoring, and significantly extends the lifetime of the network.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"38071-38081"},"PeriodicalIF":4.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Sensors Council 电气和电子工程师学会传感器理事会
IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-13 DOI: 10.1109/JSEN.2024.3490979
{"title":"IEEE Sensors Council","authors":"","doi":"10.1109/JSEN.2024.3490979","DOIUrl":"https://doi.org/10.1109/JSEN.2024.3490979","url":null,"abstract":"","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"C3-C3"},"PeriodicalIF":4.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10752818","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page 空白页
IF 1.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-12 DOI: 10.1109/TPS.2024.3486956
{"title":"Blank Page","authors":"","doi":"10.1109/TPS.2024.3486956","DOIUrl":"https://doi.org/10.1109/TPS.2024.3486956","url":null,"abstract":"","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"52 8","pages":"C4-C4"},"PeriodicalIF":1.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10750911","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Index IEEE Journal of Photovoltaics Vol. 14 2024 Index IEEE Journal of Photovoltaics Vol.
IF 2.5 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-11-04 DOI: 10.1109/JPHOTOV.2024.3489253
{"title":"2024 Index IEEE Journal of Photovoltaics Vol. 14","authors":"","doi":"10.1109/JPHOTOV.2024.3489253","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2024.3489253","url":null,"abstract":"","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"14 6","pages":"977-1002"},"PeriodicalIF":2.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10741899","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Sensors Council 电气和电子工程师学会传感器理事会
IF 4.3 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-10-31 DOI: 10.1109/JSEN.2024.3482915
{"title":"IEEE Sensors Council","authors":"","doi":"10.1109/JSEN.2024.3482915","DOIUrl":"https://doi.org/10.1109/JSEN.2024.3482915","url":null,"abstract":"","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"24 21","pages":"C3-C3"},"PeriodicalIF":4.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10740366","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polarization and Strain in Piezoelectric Nanomaterials: Advancing Sensing Applications in Biomedical Technology 压电纳米材料中的极化和应变:推进生物医学技术中的传感应用
IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-30 DOI: 10.1109/OJNANO.2024.3488787
Anmol Garg;Sajal Agarwal;Deepak Punetha
This paper reports the comparative analysis of different piezoelectric materials through a MEMS-based piezoelectric actuator model, emphasizing their potential for sensing applications. The polarization and electrostrictive strain tensor capabilities have been extensively studied for different piezoelectric materials such as PZT, LiNbO3, PVDF, etc. The simulation results obtained at varying voltages and mechanical stress demonstrate that LiNbO3 exhibits superior performance among the tested materials, with a polarization value of 0.5163 C/m2 at 800 volts and an electrostrictive strain tensor of 0.01 at an applied mechanical stress of 25 MPa. These findings will assist scientists in selecting the most suitable piezoelectric materials for sensing applications in biomedical fields.
本文报告了通过基于 MEMS 的压电致动器模型对不同压电材料进行的比较分析,强调了它们在传感应用方面的潜力。本文广泛研究了不同压电材料(如 PZT、LiNbO3、PVDF 等)的极化和电致应变张量能力。在不同电压和机械应力下获得的模拟结果表明,LiNbO3 在测试材料中表现出更优越的性能,在 800 伏特电压下的极化值为 0.5163 C/m2,在施加 25 兆帕机械应力时的电致伸缩应变张量为 0.01。这些发现将有助于科学家为生物医学领域的传感应用选择最合适的压电材料。
{"title":"Polarization and Strain in Piezoelectric Nanomaterials: Advancing Sensing Applications in Biomedical Technology","authors":"Anmol Garg;Sajal Agarwal;Deepak Punetha","doi":"10.1109/OJNANO.2024.3488787","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3488787","url":null,"abstract":"This paper reports the comparative analysis of different piezoelectric materials through a MEMS-based piezoelectric actuator model, emphasizing their potential for sensing applications. The polarization and electrostrictive strain tensor capabilities have been extensively studied for different piezoelectric materials such as PZT, LiNbO\u0000<sub>3</sub>\u0000, PVDF, etc. The simulation results obtained at varying voltages and mechanical stress demonstrate that LiNbO\u0000<sub>3</sub>\u0000 exhibits superior performance among the tested materials, with a polarization value of 0.5163 C/m\u0000<sup>2</sup>\u0000 at 800 volts and an electrostrictive strain tensor of 0.01 at an applied mechanical stress of 25 MPa. These findings will assist scientists in selecting the most suitable piezoelectric materials for sensing applications in biomedical fields.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"89-97"},"PeriodicalIF":1.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10739969","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Speed and Area-Efficient Serial IMPLY-Based Approximate Subtractor and Comparator for Image Processing and Neural Networks 用于图像处理和神经网络的基于 IMPLY 的高速、高面积效率串行近似减法器和比较器
IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-28 DOI: 10.1109/TNANO.2024.3487223
Nandit Kaushik;B. Srinivasu
In-Memory-Computing (IMC) through memristive architectures has recently gained traction owing to their capacity to perform logic operations within a crossbar, optimizing both area and speed constraints. This paper introduces two approximate serial IMPLY-based subtractor designs, denoted as Serial IMPLY-based Approximate Subtractor Design-1 (SIASD-1), Serial IMPLY-based Approximate Subtractor Design-2 (SIASD-2), with potential applications in image processing and deep neural networks. The proposed designs are implemented in MAGIC topology for comparison, named as Serial MAGIC-based Approximate Subtractor Design-1 (SMASD-1) and Serial MAGIC-based Approximate Subtractor Design-2 (SMASD-2). Moreover, these proposed subtractor designs are extended to design magnitude comparators. IMPLY-based approximate designs improve the overall latency up to 1.67× with energy savings in the range of 17.4% to 40.3% while occupying the same number of memristors for SIASD-1 and an increase of 3 to 5 memristors for SIASD-2, compared to the best existing exact 8-bit serial IMPLY subtractor. SMASD-1 and SMASD-2 improve the latency up to 1.43×, and energy efficiency are up by 77.6% compared to other MAGIC-based exact designs. Additionally, as comparators, the SIASD-1 and SIASD-2 are up to 4.93× faster with energy reduction up to 79.7% compared to their IMPLY-based equivalents. Similarly, the SMASD-1 and SMASD-2 reduce the latency up to 62% with area savings of 77%, compared to MAGIC-based equivalent designs. Furthermore, the proposed subtractor designs undergo analysis in an image processing application called Motion Detection, while the comparators are evaluated in Max Pooling operations. With Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) serving as assessment metrics, the proposed designs consistently demonstrate acceptable PSNR and SSIM values, affirming their suitability for these applications.
最近,通过忆阻器架构实现的内存计算(IMC)受到越来越多的关注,这是因为忆阻器架构能够在交叉条内执行逻辑运算,优化了面积和速度限制。本文介绍了两种基于 IMPLY 的近似串行减法器设计,分别称为基于 IMPLY 的近似串行减法器设计-1(SIASD-1)和基于 IMPLY 的近似串行减法器设计-2(SIASD-2),有望应用于图像处理和深度神经网络。为便于比较,建议的设计以 MAGIC 拓扑实现,命名为基于串行 MAGIC 的近似减法器设计-1(SMASD-1)和基于串行 MAGIC 的近似减法器设计-2(SMASD-2)。此外,这些拟议的减法器设计还可扩展用于设计幅度比较器。与现有的最佳精确 8 位串行 IMPLY 减法器相比,基于 IMPLY 的近似设计在占用相同数量的忆阻器(SIASD-1)和增加 3 到 5 个忆阻器(SIASD-2)的情况下,将总体延迟提高了 1.67 倍,节能范围在 17.4% 到 40.3% 之间。与其他基于 MAGIC 的精确设计相比,SMASD-1 和 SMASD-2 的延迟时间提高了 1.43 倍,能效提高了 77.6%。此外,作为比较器,SIASD-1 和 SIASD-2 与基于 IMPLY 的同类产品相比,速度提高了 4.93 倍,能耗降低了 79.7%。同样,与基于 MAGIC 的等效设计相比,SMASD-1 和 SMASD-2 的延迟时间缩短了 62%,面积节省了 77%。此外,还在名为 "运动检测 "的图像处理应用中对拟议的减法器设计进行了分析,并在最大池化操作中对比较器进行了评估。以峰值信噪比(PSNR)和结构相似性指数(SSIM)作为评估指标,所提出的设计始终显示出可接受的 PSNR 和 SSIM 值,从而肯定了它们在这些应用中的适用性。
{"title":"High-Speed and Area-Efficient Serial IMPLY-Based Approximate Subtractor and Comparator for Image Processing and Neural Networks","authors":"Nandit Kaushik;B. Srinivasu","doi":"10.1109/TNANO.2024.3487223","DOIUrl":"https://doi.org/10.1109/TNANO.2024.3487223","url":null,"abstract":"In-Memory-Computing (IMC) through memristive architectures has recently gained traction owing to their capacity to perform logic operations within a crossbar, optimizing both area and speed constraints. This paper introduces two approximate serial IMPLY-based subtractor designs, denoted as Serial IMPLY-based Approximate Subtractor Design-1 (SIASD-1), Serial IMPLY-based Approximate Subtractor Design-2 (SIASD-2), with potential applications in image processing and deep neural networks. The proposed designs are implemented in MAGIC topology for comparison, named as Serial MAGIC-based Approximate Subtractor Design-1 (SMASD-1) and Serial MAGIC-based Approximate Subtractor Design-2 (SMASD-2). Moreover, these proposed subtractor designs are extended to design magnitude comparators. IMPLY-based approximate designs improve the overall latency up to 1.67× with energy savings in the range of 17.4% to 40.3% while occupying the same number of memristors for SIASD-1 and an increase of 3 to 5 memristors for SIASD-2, compared to the best existing exact 8-bit serial IMPLY subtractor. SMASD-1 and SMASD-2 improve the latency up to 1.43×, and energy efficiency are up by 77.6% compared to other MAGIC-based exact designs. Additionally, as comparators, the SIASD-1 and SIASD-2 are up to 4.93× faster with energy reduction up to 79.7% compared to their IMPLY-based equivalents. Similarly, the SMASD-1 and SMASD-2 reduce the latency up to 62% with area savings of 77%, compared to MAGIC-based equivalent designs. Furthermore, the proposed subtractor designs undergo analysis in an image processing application called Motion Detection, while the comparators are evaluated in Max Pooling operations. With Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) serving as assessment metrics, the proposed designs consistently demonstrate acceptable PSNR and SSIM values, affirming their suitability for these applications.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"748-757"},"PeriodicalIF":2.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Development of a New Smart Portable I-V Tracer 设计和开发新型智能便携式 I-V 示踪器
IF 2.5 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-10-28 DOI: 10.1109/JPHOTOV.2024.3438451
Navid Tavakoli;Pascal Koelblin;Michael Saliba
Photovoltaic (PV) module performance is primarily characterized by their current-voltage (I-V) measurements. However, the data obtained mostly contains errors. Commercial I-V curve tracking units are generally expensive, hard to transport, slow to respond, and limited at low irradiations. This article proposes a novel I-V tracer (SEPIV) based on an optimized single-ended primary inductance converter. The SEPIV comprises a linear variable dc load connected to the solar panel's output. In this study, the experimental performance of the SEPIV was compared with the outcomes of commercial and lab devices, which are PVPM 1000 C 40 (PVPM) and WAVELABS SINUS-3000 PRO, respectively. SEPIV's accuracy matched lab units and surpassed PVPM's. As a highlight of this study, the introduced setup can capture the I-V curves of PV modules up to 650 W, a maximum VOC of 60 V, and a maximum ISC of 20 A. In contrast to commercial units, the SEPIV measurement does not depend on irradiation level. Moreover, it has the Internet of Things capability through a Wi-Fi connection for remote measurement.
光伏(PV)模块的性能主要由其电流-电压(I-V)测量值来表征。然而,获得的数据大多存在误差。商用 I-V 曲线跟踪装置通常价格昂贵、难以运输、响应速度慢,而且在低辐照度时受到限制。本文提出了一种基于优化单端初级电感转换器的新型 I-V 曲线跟踪器 (SEPIV)。SEPIV 包括一个连接到太阳能电池板输出端的线性可变直流负载。在这项研究中,SEPIV 的实验性能与商用和实验室设备的结果进行了比较,这两种设备分别是 PVPM 1000 C 40 (PVPM) 和 WAVELABS SINUS-3000 PRO。SEPIV 的准确度与实验室设备相当,并超过了 PVPM。与商用装置相比,SEPIV 测量不依赖于辐照水平。此外,它还具有物联网功能,可通过 Wi-Fi 连接进行远程测量。
{"title":"Design and Development of a New Smart Portable I-V Tracer","authors":"Navid Tavakoli;Pascal Koelblin;Michael Saliba","doi":"10.1109/JPHOTOV.2024.3438451","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2024.3438451","url":null,"abstract":"Photovoltaic (PV) module performance is primarily characterized by their current-voltage (\u0000<italic>I-V</i>\u0000) measurements. However, the data obtained mostly contains errors. Commercial \u0000<italic>I-V</i>\u0000 curve tracking units are generally expensive, hard to transport, slow to respond, and limited at low irradiations. This article proposes a novel \u0000<italic>I-V</i>\u0000 tracer (SEPIV) based on an optimized single-ended primary inductance converter. The SEPIV comprises a linear variable dc load connected to the solar panel's output. In this study, the experimental performance of the SEPIV was compared with the outcomes of commercial and lab devices, which are PVPM 1000 C 40 (PVPM) and WAVELABS SINUS-3000 PRO, respectively. SEPIV's accuracy matched lab units and surpassed PVPM's. As a highlight of this study, the introduced setup can capture the \u0000<italic>I-V</i>\u0000 curves of PV modules up to 650 W, a maximum \u0000<italic>V</i>\u0000<sub>OC</sub>\u0000 of 60 V, and a maximum \u0000<italic>I</i>\u0000<sub>SC</sub>\u0000 of 20 A. In contrast to commercial units, the SEPIV measurement does not depend on irradiation level. Moreover, it has the Internet of Things capability through a Wi-Fi connection for remote measurement.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"14 6","pages":"951-959"},"PeriodicalIF":2.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Editor-in-Chief Transition 编辑主编过渡
IF 1.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-25 DOI: 10.1109/TPS.2024.3412532
Edl Schamiloglu
{"title":"Editorial Editor-in-Chief Transition","authors":"Edl Schamiloglu","doi":"10.1109/TPS.2024.3412532","DOIUrl":"https://doi.org/10.1109/TPS.2024.3412532","url":null,"abstract":"","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"52 7","pages":"2652-2652"},"PeriodicalIF":1.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736389","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Open Access Publishing IEEE 开放存取出版
IF 2.5 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-10-25 DOI: 10.1109/JPHOTOV.2024.3480752
{"title":"IEEE Open Access Publishing","authors":"","doi":"10.1109/JPHOTOV.2024.3480752","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2024.3480752","url":null,"abstract":"","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"14 6","pages":"975-975"},"PeriodicalIF":2.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736228","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1