Pub Date : 2024-11-13DOI: 10.1109/JSEN.2024.3467055
Qian Sun;Jialong Pang;Xiaoyi Wang;Zhiyao Zhao;Jing Li
Given the intrinsic low energy and high consumption characteristics of sensor nodes, it is imperative to explore strategies for achieving energy-efficient routing within wireless sensor networks (WSNs). A significant body of existing research on clustered routing algorithms for WSNs has concentrated on employing heuristic optimization algorithms to facilitate the selection of routing paths. However, once the number of sensor nodes or the deployment environment changes, the algorithm’s performance can fluctuate significantly, potentially requiring redesign and retuning. In this article, we propose the clustered routing algorithm based on forwarding mechanism optimization (CRFMO), which defines separate routing rules for intracluster and intercluster communication, providing suitable communication paths for nodes. The algorithm eschews the complex procedure of parameter tuning during the routing path selection process and contributes to expediting WSN deployment and balancing node load pressure, ultimately extending the network’s operational lifespan. Simulation outcomes reveal that, in comparison to LEACH-IACA and IMP-LEACH, the CRFMO algorithm markedly enhances energy distribution balance, equalizes the burden among nodes, sustains high network coverage over an extended period, which enhances the quality of network monitoring, and significantly extends the lifetime of the network.
{"title":"A Clustered Routing Algorithm Based on Forwarding Mechanism Optimization","authors":"Qian Sun;Jialong Pang;Xiaoyi Wang;Zhiyao Zhao;Jing Li","doi":"10.1109/JSEN.2024.3467055","DOIUrl":"https://doi.org/10.1109/JSEN.2024.3467055","url":null,"abstract":"Given the intrinsic low energy and high consumption characteristics of sensor nodes, it is imperative to explore strategies for achieving energy-efficient routing within wireless sensor networks (WSNs). A significant body of existing research on clustered routing algorithms for WSNs has concentrated on employing heuristic optimization algorithms to facilitate the selection of routing paths. However, once the number of sensor nodes or the deployment environment changes, the algorithm’s performance can fluctuate significantly, potentially requiring redesign and retuning. In this article, we propose the clustered routing algorithm based on forwarding mechanism optimization (CRFMO), which defines separate routing rules for intracluster and intercluster communication, providing suitable communication paths for nodes. The algorithm eschews the complex procedure of parameter tuning during the routing path selection process and contributes to expediting WSN deployment and balancing node load pressure, ultimately extending the network’s operational lifespan. Simulation outcomes reveal that, in comparison to LEACH-IACA and IMP-LEACH, the CRFMO algorithm markedly enhances energy distribution balance, equalizes the burden among nodes, sustains high network coverage over an extended period, which enhances the quality of network monitoring, and significantly extends the lifetime of the network.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"38071-38081"},"PeriodicalIF":4.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1109/TPS.2024.3486956
{"title":"Blank Page","authors":"","doi":"10.1109/TPS.2024.3486956","DOIUrl":"https://doi.org/10.1109/TPS.2024.3486956","url":null,"abstract":"","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"52 8","pages":"C4-C4"},"PeriodicalIF":1.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10750911","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1109/JPHOTOV.2024.3489253
{"title":"2024 Index IEEE Journal of Photovoltaics Vol. 14","authors":"","doi":"10.1109/JPHOTOV.2024.3489253","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2024.3489253","url":null,"abstract":"","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"14 6","pages":"977-1002"},"PeriodicalIF":2.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10741899","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1109/OJNANO.2024.3488787
Anmol Garg;Sajal Agarwal;Deepak Punetha
This paper reports the comparative analysis of different piezoelectric materials through a MEMS-based piezoelectric actuator model, emphasizing their potential for sensing applications. The polarization and electrostrictive strain tensor capabilities have been extensively studied for different piezoelectric materials such as PZT, LiNbO 3