Pub Date : 2025-03-01Epub Date: 2024-10-22DOI: 10.1115/1.4066555
Jordi Descarrega, Joan Fontdevila, Erica Segura, Héctor Oyonate, German Bellemi, Brittany Taylor
Our group has developed a new nitinol endoluminal self-expandable device for microvascular anastomosis. It attaches to each vessel ending with opposite directed microspikes and reaches complete expansion at body temperature, using the nitinol shape memory capacity. The main purpose of this first in vivo trial is to evaluate the mechanical viability of the device and its immediate and early functionality. A recuperation study with seven New Zealand White rabbits was designed. A 1.96 mm outer diameter prototype of the new device was placed on the right femoral artery of each rabbit. Each anastomosis was reassessed on the seventh postoperative day to reevaluate the device function. The average anastomosis time with the new device was 18 min and 45 seg (±0.3 seg). It could be easily placed in all the cases with an average of 1.14 (1) complementary stitches needed to achieve a sealed anastomosis. Patency test was positive for all the cases on the immediate assessment. On the 1 week revision surgery, patency test was negative for the seven rabbits due to blood clot formation inside the device. The new device that we have developed is simple to use and shows correct immediate functionality. On the early assessment, the presence of a foreign body in the endoluminal space caused blood clot formation. We speculate that a heparin eluting version of the device could avoid thrombosis formation. We consider that the results obtained can be valuable for other endoluminal sutureless devices.
{"title":"Mechanical Viability and Functionality Assessment of a New Sutureless Endoluminal Microvascular Device: A Preliminary In Vivo Rabbit Study.","authors":"Jordi Descarrega, Joan Fontdevila, Erica Segura, Héctor Oyonate, German Bellemi, Brittany Taylor","doi":"10.1115/1.4066555","DOIUrl":"10.1115/1.4066555","url":null,"abstract":"<p><p>Our group has developed a new nitinol endoluminal self-expandable device for microvascular anastomosis. It attaches to each vessel ending with opposite directed microspikes and reaches complete expansion at body temperature, using the nitinol shape memory capacity. The main purpose of this first in vivo trial is to evaluate the mechanical viability of the device and its immediate and early functionality. A recuperation study with seven New Zealand White rabbits was designed. A 1.96 mm outer diameter prototype of the new device was placed on the right femoral artery of each rabbit. Each anastomosis was reassessed on the seventh postoperative day to reevaluate the device function. The average anastomosis time with the new device was 18 min and 45 seg (±0.3 seg). It could be easily placed in all the cases with an average of 1.14 (1) complementary stitches needed to achieve a sealed anastomosis. Patency test was positive for all the cases on the immediate assessment. On the 1 week revision surgery, patency test was negative for the seven rabbits due to blood clot formation inside the device. The new device that we have developed is simple to use and shows correct immediate functionality. On the early assessment, the presence of a foreign body in the endoluminal space caused blood clot formation. We speculate that a heparin eluting version of the device could avoid thrombosis formation. We consider that the results obtained can be valuable for other endoluminal sutureless devices.</p>","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":"19 1","pages":"015002"},"PeriodicalIF":0.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500805/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-10-22DOI: 10.1115/1.4066679
Andrea F Cruz, Jacob Herrmann, Bakir Hajdarevic, Monica L Hawley, Donald Fox, Jason H T Bates, David W Kaczka
During mechanical ventilation, lung function and gas exchange in structurally heterogeneous lungs may be improved when volume oscillations at the airway opening are applied at multiple frequencies simultaneously, a technique referred to as multifrequency oscillatory ventilation (MFOV). This is in contrast to conventional high-frequency oscillatory ventilation (HFOV), for which oscillatory volumes are applied at a single frequency. In the present study, as a means of fully realizing the potential of MFOV, we designed and tested a computer-controlled hybrid oscillatory ventilator capable of generating the flows, tidal volumes, and airway pressures required for MFOV, HFOV, conventional mechanical ventilation (CMV), as well as oscillometric measurements of respiratory impedance. The device employs an iterative spectral feedback controller to generate a wide range of oscillatory waveforms. The performance of the device meets that of commercial mechanical ventilators in volume-controlled mode. Oscillatory modes of ventilation also meet design specifications in a mechanical test lung, over frequencies from 4 to 20 Hz and mean airway pressure from 5 to 30 cmH2O. In proof-of-concept experiments, the oscillatory ventilator maintained adequate gas exchange in a porcine model of acute lung injury, using combinations of conventional and oscillatory ventilation modalities. In summary, our novel device is capable of generating a wide range of conventional and oscillatory ventilation waveforms with potential to enhance gas exchange, while simultaneously providing less injurious ventilation.
{"title":"Design and Implementation of a Computer-Controlled Hybrid Oscillatory Ventilator.","authors":"Andrea F Cruz, Jacob Herrmann, Bakir Hajdarevic, Monica L Hawley, Donald Fox, Jason H T Bates, David W Kaczka","doi":"10.1115/1.4066679","DOIUrl":"10.1115/1.4066679","url":null,"abstract":"<p><p>During mechanical ventilation, lung function and gas exchange in structurally heterogeneous lungs may be improved when volume oscillations at the airway opening are applied at multiple frequencies simultaneously, a technique referred to as multifrequency oscillatory ventilation (MFOV). This is in contrast to conventional high-frequency oscillatory ventilation (HFOV), for which oscillatory volumes are applied at a single frequency. In the present study, as a means of fully realizing the potential of MFOV, we designed and tested a computer-controlled hybrid oscillatory ventilator capable of generating the flows, tidal volumes, and airway pressures required for MFOV, HFOV, conventional mechanical ventilation (CMV), as well as oscillometric measurements of respiratory impedance. The device employs an iterative spectral feedback controller to generate a wide range of oscillatory waveforms. The performance of the device meets that of commercial mechanical ventilators in volume-controlled mode. Oscillatory modes of ventilation also meet design specifications in a mechanical test lung, over frequencies from 4 to 20 Hz and mean airway pressure from 5 to 30 cmH<sub>2</sub>O. In proof-of-concept experiments, the oscillatory ventilator maintained adequate gas exchange in a porcine model of acute lung injury, using combinations of conventional and oscillatory ventilation modalities. In summary, our novel device is capable of generating a wide range of conventional and oscillatory ventilation waveforms with potential to enhance gas exchange, while simultaneously providing less injurious ventilation.</p>","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":"19 1","pages":"011001"},"PeriodicalIF":0.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500807/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142516706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-11-19DOI: 10.1088/2631-7990/ad878c
I Deniz Derman, Taino Rivera, Laura Garriga Cerda, Yogendra Pratap Singh, Shweta Saini, Hasan Erbil Abaci, Ibrahim T Ozbolat
This comprehensive review explores the multifaceted landscape of skin bioprinting, revolutionizing dermatological research. The applications of skin bioprinting utilizing techniques like extrusion-, droplet-, laser- and light-based methods, with specialized bioinks for skin biofabrication have been critically reviewed along with the intricate aspects of bioprinting hair follicles, sweat glands, and achieving skin pigmentation. Challenges remain with the need for vascularization, safety concerns, and the integration of automated processes for effective clinical translation. The review further investigates the incorporation of biosensor technologies, emphasizing their role in monitoring and enhancing the wound healing process. While highlighting the remarkable progress in the field, critical limitations and concerns are critically examined to provide a balanced perspective. This synthesis aims to guide scientists, engineers, and healthcare providers, fostering a deeper understanding of the current state, challenges, and future directions in skin bioprinting for transformative applications in tissue engineering and regenerative medicine.
{"title":"Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration.","authors":"I Deniz Derman, Taino Rivera, Laura Garriga Cerda, Yogendra Pratap Singh, Shweta Saini, Hasan Erbil Abaci, Ibrahim T Ozbolat","doi":"10.1088/2631-7990/ad878c","DOIUrl":"10.1088/2631-7990/ad878c","url":null,"abstract":"<p><p>This comprehensive review explores the multifaceted landscape of skin bioprinting, revolutionizing dermatological research. The applications of skin bioprinting utilizing techniques like extrusion-, droplet-, laser- and light-based methods, with specialized bioinks for skin biofabrication have been critically reviewed along with the intricate aspects of bioprinting hair follicles, sweat glands, and achieving skin pigmentation. Challenges remain with the need for vascularization, safety concerns, and the integration of automated processes for effective clinical translation. The review further investigates the incorporation of biosensor technologies, emphasizing their role in monitoring and enhancing the wound healing process. While highlighting the remarkable progress in the field, critical limitations and concerns are critically examined to provide a balanced perspective. This synthesis aims to guide scientists, engineers, and healthcare providers, fostering a deeper understanding of the current state, challenges, and future directions in skin bioprinting for transformative applications in tissue engineering and regenerative medicine.</p>","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"7 1","pages":"012009"},"PeriodicalIF":16.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574952/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-02-20DOI: 10.1080/21645698.2024.2318876
Stuart J Smyth, Sylvain Charlebois
Innovation is of fundamental importance for improving food production, as well as sustainability food production. Since 1960, food production has benefited from innovations in plant breeding technologies, fertilizer, chemicals and equipment. These innovations have dramatically increased food production, while the amount of land used has minimally increased. However, future food production increases are jeopardized from widening knowledge gaps between rural food producers and large urban food consuming populations. Over time, that gap has fueled disinformation. The development of disinformation business models contributes to urban consumers receiving inaccurate information about the importance of inputs essential to food production, resulting in political pressures being applied that are targeted at reductions in the use of many food production inputs. The use of chemicals are a frequent target of disinformation campaigns. This article examines how the lack of government clarity about the safe use of chemicals contributes to a lack of public information.
{"title":"Agricultural chemical use and the rural-urban divide in Canada.","authors":"Stuart J Smyth, Sylvain Charlebois","doi":"10.1080/21645698.2024.2318876","DOIUrl":"10.1080/21645698.2024.2318876","url":null,"abstract":"<p><p>Innovation is of fundamental importance for improving food production, as well as sustainability food production. Since 1960, food production has benefited from innovations in plant breeding technologies, fertilizer, chemicals and equipment. These innovations have dramatically increased food production, while the amount of land used has minimally increased. However, future food production increases are jeopardized from widening knowledge gaps between rural food producers and large urban food consuming populations. Over time, that gap has fueled disinformation. The development of disinformation business models contributes to urban consumers receiving inaccurate information about the importance of inputs essential to food production, resulting in political pressures being applied that are targeted at reductions in the use of many food production inputs. The use of chemicals are a frequent target of disinformation campaigns. This article examines how the lack of government clarity about the safe use of chemicals contributes to a lack of public information.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"15 1","pages":"32-39"},"PeriodicalIF":3.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880490/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139906926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-02-25DOI: 10.1080/21645698.2024.2318027
Camille D Ryan, Elizabeth Henggeler, Samantha Gilbert, Andrew J Schaul, John T Swarthout
Labels are influential signals in the marketplace intended to inform and to eliminate buyer confusion. Despite this, food labels continue to be the subject of debate. None more so than non-GMO (genetically modified organisms) labels. This manuscript provides a timeline of the evolution of GMO labels beginning with the early history of the anti-GMO movement to the current National Bioengineered Food Disclosure Standard in the United States. Using media and market intelligence data collected through Buzzsumo™ and Mintel™, public discourse of GMOs is analyzed in relation to sociopolitical events and the number of new food products with anti-GMO labels, respectively. Policy document and publication data is collected with Overton™ to illustrate the policy landscape for the GMO topic and how it has changed over time. Analysis of the collective data illustrates that while social media and policy engagement around the topic of GMOs has diminished over time, the number of new products with a GMO-free designation continues to grow. While discourse peaked at one point, and has since declined, our results suggest that the legacy of an anti-GMO narrative remains firmly embedded in the social psyche, evidenced by the continuing rise of products with GMO-free designation. Campaigns for GMO food labels to satisfy consumers' right to know were successful and the perceived need for this information now appears to be self-sustaining.
{"title":"Exploring the GMO narrative through labeling: strategies, products, and politics.","authors":"Camille D Ryan, Elizabeth Henggeler, Samantha Gilbert, Andrew J Schaul, John T Swarthout","doi":"10.1080/21645698.2024.2318027","DOIUrl":"10.1080/21645698.2024.2318027","url":null,"abstract":"<p><p>Labels are influential signals in the marketplace intended to inform and to eliminate buyer confusion. Despite this, food labels continue to be the subject of debate. None more so than non-GMO (genetically modified organisms) labels. This manuscript provides a timeline of the evolution of GMO labels beginning with the early history of the anti-GMO movement to the current National Bioengineered Food Disclosure Standard in the United States. Using media and market intelligence data collected through Buzzsumo™ and Mintel™, public discourse of GMOs is analyzed in relation to sociopolitical events and the number of new food products with anti-GMO labels, respectively. Policy document and publication data is collected with Overton™ to illustrate the policy landscape for the GMO topic and how it has changed over time. Analysis of the collective data illustrates that while social media and policy engagement around the topic of GMOs has diminished over time, the number of new products with a GMO-free designation continues to grow. While discourse peaked at one point, and has since declined, our results suggest that the legacy of an anti-GMO narrative remains firmly embedded in the social psyche, evidenced by the continuing rise of products with GMO-free designation. Campaigns for GMO food labels to satisfy consumers' right to know were successful and the perceived need for this information now appears to be self-sustaining.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"15 1","pages":"51-66"},"PeriodicalIF":3.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896172/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-03-20DOI: 10.1080/21645698.2024.2325181
Juan Pablo Portilla Llerena, Eduardo Kiyota, Fernanda Raquel Camilo Dos Santos, Julio C Garcia, Rodrigo Faleiro de Lima, Juliana Lischka Sampaio Mayer, Michael Dos Santos Brito, Paulo Mazzafera, Silvana Creste, Paula Macedo Nobile
The agricultural sugarcane residues, bagasse and straws, can be used for second-generation ethanol (2GE) production by the cellulose conversion into glucose (saccharification). However, the lignin content negatively impacts the saccharification process. This polymer is mainly composed of guaiacyl (G), hydroxyphenyl (H), and syringyl (S) units, the latter formed in the ferulate 5-hydroxylase (F5H) branch of the lignin biosynthesis pathway. We have generated transgenic lines overexpressing ShF5H1 under the control of the C4H (cinnamate 4-hydroxylase) rice promoter, which led to a significant increase of up to 160% in the S/G ratio and 63% in the saccharification efficiency in leaves. Nevertheless, the content of lignin was unchanged in this organ. In culms, neither the S/G ratio nor sucrose accumulation was altered, suggesting that ShF5H1 overexpression would not affect first-generation ethanol production. Interestingly, the bagasse showed a significantly higher fiber content. Our results indicate that the tissue-specific manipulation of the biosynthetic branch leading to S unit formation is industrially advantageous and has established a foundation for further studies aiming at refining lignin modifications. Thus, the ShF5H1 overexpression in sugarcane emerges as an efficient strategy to improve 2GE production from straw.
{"title":"<i>ShF5H1</i> overexpression increases syringyl lignin and improves saccharification in sugarcane leaves.","authors":"Juan Pablo Portilla Llerena, Eduardo Kiyota, Fernanda Raquel Camilo Dos Santos, Julio C Garcia, Rodrigo Faleiro de Lima, Juliana Lischka Sampaio Mayer, Michael Dos Santos Brito, Paulo Mazzafera, Silvana Creste, Paula Macedo Nobile","doi":"10.1080/21645698.2024.2325181","DOIUrl":"10.1080/21645698.2024.2325181","url":null,"abstract":"<p><p>The agricultural sugarcane residues, bagasse and straws, can be used for second-generation ethanol (2GE) production by the cellulose conversion into glucose (saccharification). However, the lignin content negatively impacts the saccharification process. This polymer is mainly composed of guaiacyl (G), hydroxyphenyl (H), and syringyl (S) units, the latter formed in the ferulate 5-hydroxylase (F5H) branch of the lignin biosynthesis pathway. We have generated transgenic lines overexpressing <i>ShF5H1</i> under the control of the <i>C4H</i> (cinnamate 4-hydroxylase) rice promoter, which led to a significant increase of up to 160% in the S/G ratio and 63% in the saccharification efficiency in leaves. Nevertheless, the content of lignin was unchanged in this organ. In culms, neither the S/G ratio nor sucrose accumulation was altered, suggesting that <i>ShF5H1</i> overexpression would not affect first-generation ethanol production. Interestingly, the bagasse showed a significantly higher fiber content. Our results indicate that the tissue-specific manipulation of the biosynthetic branch leading to S unit formation is industrially advantageous and has established a foundation for further studies aiming at refining lignin modifications. Thus, the <i>ShF5H1</i> overexpression in sugarcane emerges as an efficient strategy to improve 2GE production from straw.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"15 1","pages":"67-84"},"PeriodicalIF":3.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956634/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140177730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-03-11DOI: 10.1080/21645698.2024.2328384
Yang Zhao, Jianyu Lu, Bo Hu, Peng Jiao, Bai Gao, Zhenzhong Jiang, Siyan Liu, Shuyan Guan, Yiyong Ma
Maize (Zea mays L.) is the most important cereal crop in the world. Flowering period and photoperiod play important roles in the reproductive development of maize. This study, investigated ZmMADS42, a gene that is highly expressed in the shoot apical meristem. Agrobacterium infection was used to successfully obtain overexpressed ZmMADS42 plants. Fluorescence quantitative PCR revealed that the expression of the ZmMADS42 gene in the shoot apical meristem of transgenic plants was 2.8 times higher than that of the wild-type(WT). In addition, the expression of the ZmMADS42 gene in the endosperm was 2.4 times higher than that in the wild-type. The seed width of the T2 generation increased by 5.35%, whereas the seed length decreased by 7.78% compared with that of the wild-type. Dissection of the shoot tips of transgenic and wild-type plants from the 7-leaf stage to the 9-leaf stage revealed that the transgenic plants entered the differentiation stage earlier and exhibited more tassel meristems during their vegetative growth period. The mature transgenic plants were approximately 20 cm shorter in height and had a lower panicle position than the wild-type plants. Comparing the flowering period, the tasseling, powdering, and silking stages of the transgenic plants occurred 10 days earlier than those of the wild-type plants. The results showed that the ZmMADS42 gene played a significant role in regulating the flowering period and plant height of maize.
{"title":"Cloning and functional analysis of ZmMADS42 gene in maize.","authors":"Yang Zhao, Jianyu Lu, Bo Hu, Peng Jiao, Bai Gao, Zhenzhong Jiang, Siyan Liu, Shuyan Guan, Yiyong Ma","doi":"10.1080/21645698.2024.2328384","DOIUrl":"10.1080/21645698.2024.2328384","url":null,"abstract":"<p><p>Maize (<i>Zea mays</i> L.) is the most important cereal crop in the world. Flowering period and photoperiod play important roles in the reproductive development of maize. This study, investigated <i>ZmMADS42</i>, a gene that is highly expressed in the shoot apical meristem. <i>Agrobacterium</i> infection was used to successfully obtain overexpressed <i>ZmMADS42</i> plants. Fluorescence quantitative PCR revealed that the expression of the <i>ZmMADS42</i> gene in the shoot apical meristem of transgenic plants was 2.8 times higher than that of the wild-type(WT). In addition, the expression of the ZmMADS42 gene in the endosperm was 2.4 times higher than that in the wild-type. The seed width of the T2 generation increased by 5.35%, whereas the seed length decreased by 7.78% compared with that of the wild-type. Dissection of the shoot tips of transgenic and wild-type plants from the 7-leaf stage to the 9-leaf stage revealed that the transgenic plants entered the differentiation stage earlier and exhibited more tassel meristems during their vegetative growth period. The mature transgenic plants were approximately 20 cm shorter in height and had a lower panicle position than the wild-type plants. Comparing the flowering period, the tasseling, powdering, and silking stages of the transgenic plants occurred 10 days earlier than those of the wild-type plants. The results showed that the <i>ZmMADS42</i> gene played a significant role in regulating the flowering period and plant height of maize.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"15 1","pages":"105-117"},"PeriodicalIF":3.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140095152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-02-15DOI: 10.1080/15476278.2024.2313696
Brandon M Lehrich, Evan R Delgado
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. HCC is highly heterogenous with diverse etiologies leading to different driver mutations potentiating unique tumor immune microenvironments. Current therapeutic options, including immune checkpoint inhibitors and combinations, have achieved limited objective response rates for the majority of patients. Thus, a precision medicine approach is needed to tailor specific treatment options for molecular subsets of HCC patients. Lipid nanovesicle platforms, either liposome- (synthetic) or extracellular vesicle (natural)-derived present are improved drug delivery vehicles which may be modified to contain specific cargos for targeting specific tumor sites, with a natural affinity for liver with limited toxicity. This mini-review provides updates on the applications of novel lipid nanovesicle-based therapeutics for HCC precision medicine and the challenges associated with translating this therapeutic subclass from preclinical models to the clinic.
{"title":"Lipid Nanovesicle Platforms for Hepatocellular Carcinoma Precision Medicine Therapeutics: Progress and Perspectives.","authors":"Brandon M Lehrich, Evan R Delgado","doi":"10.1080/15476278.2024.2313696","DOIUrl":"10.1080/15476278.2024.2313696","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. HCC is highly heterogenous with diverse etiologies leading to different driver mutations potentiating unique tumor immune microenvironments. Current therapeutic options, including immune checkpoint inhibitors and combinations, have achieved limited objective response rates for the majority of patients. Thus, a precision medicine approach is needed to tailor specific treatment options for molecular subsets of HCC patients. Lipid nanovesicle platforms, either liposome- (synthetic) or extracellular vesicle (natural)-derived present are improved drug delivery vehicles which may be modified to contain specific cargos for targeting specific tumor sites, with a natural affinity for liver with limited toxicity. This mini-review provides updates on the applications of novel lipid nanovesicle-based therapeutics for HCC precision medicine and the challenges associated with translating this therapeutic subclass from preclinical models to the clinic.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"20 1","pages":"2313696"},"PeriodicalIF":1.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139735778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-03-29DOI: 10.1080/21645698.2024.2334476
Yumna Ahmad, Saqlain Haider, Javed Iqbal, Sana Naseer, Kotb A Attia, Arif Ahmed Mohammed, Sajid Fiaz, Tariq Mahmood
Global crop yield has been affected by a number of abiotic stresses. Heat, salinity, and drought stress are at the top of the list as serious environmental growth-limiting factors. To enhance crop productivity, molecular approaches have been used to determine the key regulators affecting stress-related phenomena. MYB transcription factors (TF) have been reported as one of the promising defensive proteins against the unfavorable conditions that plants must face. Different roles of MYB TFs have been suggested such as regulation of cellular growth and differentiation, hormonal signaling, mediating abiotic stress responses, etc. To gain significant insights, a comprehensive in-silico analysis of OsMYB TF was carried out in comparison with 21 dicot MYB TFs and 10 monocot MYB TFs. Their chromosomal location, gene structure, protein domain, and motifs were analyzed. The phylogenetic relationship was also studied, which resulted in the classification of proteins into four basic groups: groups A, B, C, and D. The protein motif analysis identified several conserved sequences responsible for cellular activities. The gene structure analysis suggested that proteins that were present in the same class, showed similar intron-exon structures. Promoter analysis revealed major cis-acting elements that were found to be responsible for hormonal signaling and initiating a response to abiotic stress and light-induced mechanisms. The transformation of OsMYB TF into tobacco was carried out using the Agrobacterium-mediated transformation method, to further analyze the expression level of a gene in different plant parts, under stress conditions. To summarize, the current studies shed light on the evolution and role of OsMYB TF in plants. Future investigations should focus on elucidating the functional roles of MYB transcription factors in abiotic stress tolerance through targeted genetic modification and CRISPR/Cas9-mediated genome editing. The application of omics approaches and systems biology will be indispensable in delineating the regulatory networks orchestrated by MYB TFs, facilitating the development of crop genotypes with enhanced resilience to environmental stressors. Rigorous field validation of these genetically engineered or edited crops is imperative to ascertain their utility in promoting sustainable agricultural practices.
{"title":"In-silico analysis and transformation of OsMYB48 transcription factor driven by CaMV35S promoter in model plant - <i>Nicotiana tabacum</i> L. conferring abiotic stress tolerance.","authors":"Yumna Ahmad, Saqlain Haider, Javed Iqbal, Sana Naseer, Kotb A Attia, Arif Ahmed Mohammed, Sajid Fiaz, Tariq Mahmood","doi":"10.1080/21645698.2024.2334476","DOIUrl":"10.1080/21645698.2024.2334476","url":null,"abstract":"<p><p>Global crop yield has been affected by a number of abiotic stresses. Heat, salinity, and drought stress are at the top of the list as serious environmental growth-limiting factors. To enhance crop productivity, molecular approaches have been used to determine the key regulators affecting stress-related phenomena. MYB transcription factors (TF) have been reported as one of the promising defensive proteins against the unfavorable conditions that plants must face. Different roles of MYB TFs have been suggested such as regulation of cellular growth and differentiation, hormonal signaling, mediating abiotic stress responses, etc. To gain significant insights, a comprehensive in-silico analysis of OsMYB TF was carried out in comparison with 21 dicot MYB TFs and 10 monocot MYB TFs. Their chromosomal location, gene structure, protein domain, and motifs were analyzed. The phylogenetic relationship was also studied, which resulted in the classification of proteins into four basic groups: groups A, B, C, and D. The protein motif analysis identified several conserved sequences responsible for cellular activities. The gene structure analysis suggested that proteins that were present in the same class, showed similar intron-exon structures. Promoter analysis revealed major cis-acting elements that were found to be responsible for hormonal signaling and initiating a response to abiotic stress and light-induced mechanisms. The transformation of OsMYB TF into tobacco was carried out using the <i>Agrobacterium</i>-mediated transformation method, to further analyze the expression level of a gene in different plant parts, under stress conditions. To summarize, the current studies shed light on the evolution and role of OsMYB TF in plants. Future investigations should focus on elucidating the functional roles of MYB transcription factors in abiotic stress tolerance through targeted genetic modification and CRISPR/Cas9-mediated genome editing. The application of omics approaches and systems biology will be indispensable in delineating the regulatory networks orchestrated by MYB TFs, facilitating the development of crop genotypes with enhanced resilience to environmental stressors. Rigorous field validation of these genetically engineered or edited crops is imperative to ascertain their utility in promoting sustainable agricultural practices.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"15 1","pages":"130-149"},"PeriodicalIF":3.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-07-15DOI: 10.1080/21645698.2024.2377408
Gideon Sadikiel Mmbando, Kelvin Ngongolo
Advances in genetic modification (GM) techniques have generated huge interest in improving nutrient utilization, maximizing nutrient uptake, and conserving soil in the pursuit of sustainable agriculture. Unfortunately, little is still known about the recent advancements in the application of GM tactics to enhance each of these areas. This review explores the latest GM strategies intended to support soil conservation, maximize nutrient uptake, and improve nutrient utilization in farming, highlighting the critical roles that soil health and nutrient management play in sustainable farming. GM strategies such as improving the efficiency of nutrient uptake through enhanced root systems and increased nutrient transport mechanisms are well discussed. This study suggests that addressing potential obstacles, such as ethical and regulatory concerns, is a necessity for long-term sustainability applications of GM technologies to raise agricultural yields.
{"title":"The recent genetic modification techniques for improve soil conservation, nutrient uptake and utilization.","authors":"Gideon Sadikiel Mmbando, Kelvin Ngongolo","doi":"10.1080/21645698.2024.2377408","DOIUrl":"10.1080/21645698.2024.2377408","url":null,"abstract":"<p><p>Advances in genetic modification (GM) techniques have generated huge interest in improving nutrient utilization, maximizing nutrient uptake, and conserving soil in the pursuit of sustainable agriculture. Unfortunately, little is still known about the recent advancements in the application of GM tactics to enhance each of these areas. This review explores the latest GM strategies intended to support soil conservation, maximize nutrient uptake, and improve nutrient utilization in farming, highlighting the critical roles that soil health and nutrient management play in sustainable farming. GM strategies such as improving the efficiency of nutrient uptake through enhanced root systems and increased nutrient transport mechanisms are well discussed. This study suggests that addressing potential obstacles, such as ethical and regulatory concerns, is a necessity for long-term sustainability applications of GM technologies to raise agricultural yields.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"15 1","pages":"233-247"},"PeriodicalIF":4.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253881/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141621777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}