The marine biological pump is crucial for removing excess carbon dioxide from the atmosphere to the ocean interior and seafloor sediments. The Late Miocene Biogenic Bloom (LMBB), marked by notable increases in biogenic components in marine sediments, provides insights into the response of the biological pump to climate change. However, understanding the timing, distribution, and cause of the LMBB remains limited. We use marine barite, a refractory mineral precipitating from the water column associated with carbon export, and other proxies to reconstruct productivity in the equatorial Indian Ocean and equatorial western Atlantic between 12 and 5 Ma. Multi-proxy records reveal the onset of the LMBB in the equatorial Indian Ocean at ∼9 Ma, primarily driven by more vigorous upwelling during global cooling. We suggest that the steepened meridional temperature gradient and the Antarctic ice sheet expansion have strengthened ocean overturning, facilitating nutrient supply and biogenic bloom in upwelling regions.
{"title":"A Marine Barite Perspective of the Late Miocene Biogenic Bloom in the Equatorial Indian Ocean and Equatorial Western Atlantic Ocean","authors":"Xinying Wu, Yue Hu, Jingbo Nan, Weiqi Yao","doi":"10.1029/2024GL111748","DOIUrl":"https://doi.org/10.1029/2024GL111748","url":null,"abstract":"<p>The marine biological pump is crucial for removing excess carbon dioxide from the atmosphere to the ocean interior and seafloor sediments. The Late Miocene Biogenic Bloom (LMBB), marked by notable increases in biogenic components in marine sediments, provides insights into the response of the biological pump to climate change. However, understanding the timing, distribution, and cause of the LMBB remains limited. We use marine barite, a refractory mineral precipitating from the water column associated with carbon export, and other proxies to reconstruct productivity in the equatorial Indian Ocean and equatorial western Atlantic between 12 and 5 Ma. Multi-proxy records reveal the onset of the LMBB in the equatorial Indian Ocean at ∼9 Ma, primarily driven by more vigorous upwelling during global cooling. We suggest that the steepened meridional temperature gradient and the Antarctic ice sheet expansion have strengthened ocean overturning, facilitating nutrient supply and biogenic bloom in upwelling regions.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 22","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111748","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Thomas, H. Samuel, C. G. Farnetani, J. Aubert, C. Chauvel
Understanding the composition of lavas erupted at the surface of the Earth is key to reconstruct the long-term history of our planet. Recent geochemical analyses of ocean island basalt samples indicate the preservation of ancient mantle heterogeneities dating from the earliest stages of Earth's evolution (Péron & Moreira, 2018, https://doi.org/10.7185/geochemlet.1833), when a global magma ocean was present. Such observations contrast with fluid dynamics studies which demonstrated that in a magma ocean the convective motions, primarily driven by buoyancy, are extremely vigorous (Gastine et al., 2016, https://doi.org/10.1017/jfm.2016.659) and are therefore expected to mix heterogeneities within just a few minutes (Thomas et al., 2023, https://doi.org/10.1093/gji/ggad452). To elucidate this paradox we explored the effects of the Earth's rapid rotation on the stirring efficiency of a magma ocean, by performing state-of-the-art fluid dynamics simulations of low-viscosity, turbulent convective dynamics in a spherical shell. We found that rotational effects drastically affect the convective structure and the associated stirring efficiency. Rotation leads to the emergence of three domains with limited mass exchanges, and distinct stirring and cooling efficiencies. Still, efficient convective stirring within each region likely results in homogenization within each domain on timescales that are short compared with the solidification timescales of a magma ocean. However, the lack of mass exchange between these regions could lead to three or four large-scale domains with internally homogeneous, but distinct compositions. The existence of these separate regions in a terrestrial magma ocean suggests a new mechanism to preserve distinct geochemical signatures dating from the earliest stages of Earth's evolution.
{"title":"The Influence of Rotation on the Preservation of Heterogeneities in Magma Oceans","authors":"B. Thomas, H. Samuel, C. G. Farnetani, J. Aubert, C. Chauvel","doi":"10.1029/2024GC011891","DOIUrl":"https://doi.org/10.1029/2024GC011891","url":null,"abstract":"<p>Understanding the composition of lavas erupted at the surface of the Earth is key to reconstruct the long-term history of our planet. Recent geochemical analyses of ocean island basalt samples indicate the preservation of ancient mantle heterogeneities dating from the earliest stages of Earth's evolution (Péron & Moreira, 2018, https://doi.org/10.7185/geochemlet.1833), when a global magma ocean was present. Such observations contrast with fluid dynamics studies which demonstrated that in a magma ocean the convective motions, primarily driven by buoyancy, are extremely vigorous (Gastine et al., 2016, https://doi.org/10.1017/jfm.2016.659) and are therefore expected to mix heterogeneities within just a few minutes (Thomas et al., 2023, https://doi.org/10.1093/gji/ggad452). To elucidate this paradox we explored the effects of the Earth's rapid rotation on the stirring efficiency of a magma ocean, by performing state-of-the-art fluid dynamics simulations of low-viscosity, turbulent convective dynamics in a spherical shell. We found that rotational effects drastically affect the convective structure and the associated stirring efficiency. Rotation leads to the emergence of three domains with limited mass exchanges, and distinct stirring and cooling efficiencies. Still, efficient convective stirring within each region likely results in homogenization within each domain on timescales that are short compared with the solidification timescales of a magma ocean. However, the lack of mass exchange between these regions could lead to three or four large-scale domains with internally homogeneous, but distinct compositions. The existence of these separate regions in a terrestrial magma ocean suggests a new mechanism to preserve distinct geochemical signatures dating from the earliest stages of Earth's evolution.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011891","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Many major cities worldwide have inevitably experienced excessive groundwater pumping due to growing demands for freshwater in urban development. To mitigate land subsidence problems during urbanization, various regulations have been adopted to control groundwater usage. This study examines the transition in the post-subsidence stage, especially in metropolitan areas, to adaptively adjust subsidence prevention strategies for effective groundwater management. Taking the Taipei Basin as an example, historical data reveals significant subsidence of more than 2 m during early urban development, with subsidence hazards largely mitigated over decades. However, the rising groundwater level poses a risk to the stability of engineering excavations. In this study, 29 X-band Cosmo-Skymed constellation (CSK) images were utilized with the Persistent Scatterer InSAR (PSInSAR/PSI) technique to monitor surface displacements during the construction of the Mass Rapid Transit system. Correlating groundwater levels helps identify the heterogeneous hydrogeological environment, and the potential groundwater capacity is assessed. PSI time-series reveal that approximately 2 cm of recoverable land displacements correspond to groundwater fluctuations in the confined aquifer, indicative of the typically elastic behavior of the resilient aquifer system. The estimated groundwater storage variation is about 1.6 million cubic meters, suggesting this potential groundwater capacity could provide available water resources with proper management. Additionally, engineering excavation safety can be ensured with lowered groundwater levels. This study emphasizes the need to balance groundwater resource use with urban development by adjusting subsidence prevention and control strategies to achieve sustainable water management in the post-subsidence stage.
{"title":"Assessing Potential Groundwater Storage Capacity for Sustainable Groundwater Management in the Transitioning Post-Subsidence Metropolitan Area","authors":"Shao-Hung Lin, Jyr-Ching Hu, Shih-Jung Wang","doi":"10.1029/2023wr036951","DOIUrl":"https://doi.org/10.1029/2023wr036951","url":null,"abstract":"Many major cities worldwide have inevitably experienced excessive groundwater pumping due to growing demands for freshwater in urban development. To mitigate land subsidence problems during urbanization, various regulations have been adopted to control groundwater usage. This study examines the transition in the post-subsidence stage, especially in metropolitan areas, to adaptively adjust subsidence prevention strategies for effective groundwater management. Taking the Taipei Basin as an example, historical data reveals significant subsidence of more than 2 m during early urban development, with subsidence hazards largely mitigated over decades. However, the rising groundwater level poses a risk to the stability of engineering excavations. In this study, 29 X-band Cosmo-Skymed constellation (CSK) images were utilized with the Persistent Scatterer InSAR (PSInSAR/PSI) technique to monitor surface displacements during the construction of the Mass Rapid Transit system. Correlating groundwater levels helps identify the heterogeneous hydrogeological environment, and the potential groundwater capacity is assessed. PSI time-series reveal that approximately 2 cm of recoverable land displacements correspond to groundwater fluctuations in the confined aquifer, indicative of the typically elastic behavior of the resilient aquifer system. The estimated groundwater storage variation is about 1.6 million cubic meters, suggesting this potential groundwater capacity could provide available water resources with proper management. Additionally, engineering excavation safety can be ensured with lowered groundwater levels. This study emphasizes the need to balance groundwater resource use with urban development by adjusting subsidence prevention and control strategies to achieve sustainable water management in the post-subsidence stage.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"56 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1038/s41558-024-02183-z
Patricia DeRepentigny
Wildfires are raging around the globe with increasing intensity and frequency, transforming ecosystems and affecting the climate of regions far beyond. Now, a study shows that boreal forest fires are amplifying Arctic warming due to increased local solar absorption from biomass burning aerosols.
{"title":"When fire and ice meet","authors":"Patricia DeRepentigny","doi":"10.1038/s41558-024-02183-z","DOIUrl":"https://doi.org/10.1038/s41558-024-02183-z","url":null,"abstract":"Wildfires are raging around the globe with increasing intensity and frequency, transforming ecosystems and affecting the climate of regions far beyond. Now, a study shows that boreal forest fires are amplifying Arctic warming due to increased local solar absorption from biomass burning aerosols.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"6 1","pages":""},"PeriodicalIF":30.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah Pacocha Preheim, Shaina Morris, Yue Zhang, Chris Holder, Keith Arora‐Williams, Paul Gensbigler, Amanda Hinton, Rui Jin, Marie‐Aude Pradal, Morgan Buchanan, Anand Gnanadesikan
While metagenomics can provide insight into microbial community metabolic potential, understanding factors that influence gene abundance is necessary to maximize the information gained from this analysis. Gene abundances are influenced by chemical or physical conditions along with other factors, such as copy number variation between taxa, methodological biases, or issues associated with identification and classification. Here, we identify major drivers of spatiotemporal shifts in microbial gene relative abundance from multiple months, sites, and depths within Chesapeake Bay in 2017 using shotgun metagenomics. We compared changes in relative abundance of key genes for bacterial photosynthesis, nitrogen, and sulfur metabolism with each other and measured environmental variables. Major drivers of differences in key metabolic gene abundances are associated with environmental variables that largely change with depth and season (e.g., temperature, oxygen, phosphate). For sulfur oxidation, bacterial photosynthesis, and denitrification, genes within each process are generally significantly correlated with each other and with several environmental variables. For other processes, such as nitrification, nitrogen fixation, and dissimilatory nitrate reduction to ammonium, genes that encode enzymes within the same pathway are not well correlated. The lack of correlation typically results from differences in identified taxa carrying these genes, suggesting modular pathway structure, methodological errors, or discrepancies in gene copy number between taxonomic groups. To be suitable indicators of biogeochemical processes for models, genes or pathways should be strongly correlated with environmental variables and specific to and inclusive of all taxa mediating the associated process.
{"title":"Genes involved in carbon, nitrogen, and sulfur cycling in an important estuarine ecosystem show coherent shifts in response to changes in environmental conditions","authors":"Sarah Pacocha Preheim, Shaina Morris, Yue Zhang, Chris Holder, Keith Arora‐Williams, Paul Gensbigler, Amanda Hinton, Rui Jin, Marie‐Aude Pradal, Morgan Buchanan, Anand Gnanadesikan","doi":"10.1002/lno.12731","DOIUrl":"https://doi.org/10.1002/lno.12731","url":null,"abstract":"While metagenomics can provide insight into microbial community metabolic potential, understanding factors that influence gene abundance is necessary to maximize the information gained from this analysis. Gene abundances are influenced by chemical or physical conditions along with other factors, such as copy number variation between taxa, methodological biases, or issues associated with identification and classification. Here, we identify major drivers of spatiotemporal shifts in microbial gene relative abundance from multiple months, sites, and depths within Chesapeake Bay in 2017 using shotgun metagenomics. We compared changes in relative abundance of key genes for bacterial photosynthesis, nitrogen, and sulfur metabolism with each other and measured environmental variables. Major drivers of differences in key metabolic gene abundances are associated with environmental variables that largely change with depth and season (e.g., temperature, oxygen, phosphate). For sulfur oxidation, bacterial photosynthesis, and denitrification, genes within each process are generally significantly correlated with each other and with several environmental variables. For other processes, such as nitrification, nitrogen fixation, and dissimilatory nitrate reduction to ammonium, genes that encode enzymes within the same pathway are not well correlated. The lack of correlation typically results from differences in identified taxa carrying these genes, suggesting modular pathway structure, methodological errors, or discrepancies in gene copy number between taxonomic groups. To be suitable indicators of biogeochemical processes for models, genes or pathways should be strongly correlated with environmental variables and specific to and inclusive of all taxa mediating the associated process.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"10 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ebony L. Williams, Christopher B. Kratt, Raymond S. Rodolfo, Mark R. Lapus, Ryan R. Lardizabal, Aya S. Bangun, Amber T. Nguyen, Scott W. Tyler, M. Bayani Cardenas
Submarine groundwater discharge (SGD) in volcanic areas commonly exhibits high temperatures, concentrations of metals and CO2, and acidity, all of which could affect sensitive coastal ecosystems. Identifying and quantifying volcanic SGD is crucial yet challenging because the SGD might be both discrete, through fractured volcanic rock, and diffuse. At a volcanic area in the Philippines, the novel combination of satellite and drone-based thermal infrared remote sensing, ground-based fiber-optic distributed temperature sensing, and in situ thermal profiling in coastal sediment identified the multi-scale nature of SGD and quantified fluxes. We identified SGD across ∼30 km of coastline. The different approaches revealed numerous SGD signals from the intertidal zone to about a hundred meters offshore. In active seepage areas, temperatures peaked at 80°C, and Darcy fluxes were as high as 150 cm/d. SGD is therefore locally prominent and regionally important across the study area.
{"title":"Multi-Scale Thermal Mapping of Submarine Groundwater Discharge in Coastal Ecosystems of a Volcanic Area","authors":"Ebony L. Williams, Christopher B. Kratt, Raymond S. Rodolfo, Mark R. Lapus, Ryan R. Lardizabal, Aya S. Bangun, Amber T. Nguyen, Scott W. Tyler, M. Bayani Cardenas","doi":"10.1029/2024GL111857","DOIUrl":"https://doi.org/10.1029/2024GL111857","url":null,"abstract":"<p>Submarine groundwater discharge (SGD) in volcanic areas commonly exhibits high temperatures, concentrations of metals and CO<sub>2</sub>, and acidity, all of which could affect sensitive coastal ecosystems. Identifying and quantifying volcanic SGD is crucial yet challenging because the SGD might be both discrete, through fractured volcanic rock, and diffuse. At a volcanic area in the Philippines, the novel combination of satellite and drone-based thermal infrared remote sensing, ground-based fiber-optic distributed temperature sensing, and in situ thermal profiling in coastal sediment identified the multi-scale nature of SGD and quantified fluxes. We identified SGD across ∼30 km of coastline. The different approaches revealed numerous SGD signals from the intertidal zone to about a hundred meters offshore. In active seepage areas, temperatures peaked at 80°C, and Darcy fluxes were as high as 150 cm/d. SGD is therefore locally prominent and regionally important across the study area.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 22","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111857","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}