Pub Date : 2025-04-01Epub Date: 2025-01-04DOI: 10.1016/j.neunet.2024.107112
Yupeng Wang, Yongli Wang, Zaki Ahmad Khan, Anqi Huang, Jianghui Sang
Smoke is a critical indicator of forest fires, often detectable before flames ignite. Accurate smoke identification in remote sensing images is vital for effective forest fire monitoring within Internet of Things (IoT) systems. However, existing detection methods frequently falter in complex real-world scenarios, where variable smoke shapes and sizes, intricate backgrounds, and smoke-like phenomena (e.g., clouds and haze) lead to missed detections and false alarms. To address these challenges, we propose the Multi-level Feature Fusion Network (MFFNet), a novel framework grounded in contrastive learning. MFFNet begins by extracting multi-scale features from remote sensing images using a pre-trained ConvNeXt model, capturing information across different levels of granularity to accommodate variations in smoke appearance. The Attention Feature Enhancement Module further refines these multi-scale features, enhancing fine-grained, discriminative attributes relevant to smoke detection. Subsequently, the Bilinear Feature Fusion Module combines these enriched features, effectively reducing background interference and improving the model's ability to distinguish smoke from visually similar phenomena. Finally, contrastive feature learning is employed to improve robustness against intra-class variations by focusing on unique regions within the smoke patterns. Evaluated on the benchmark dataset USTC_SmokeRS, MFFNet achieves an accuracy of 98.87%. Additionally, our model demonstrates a detection rate of 94.54% on the extended E_SmokeRS dataset, with a low false alarm rate of 3.30%. These results highlight the effectiveness of MFFNet in recognizing smoke in remote sensing images, surpassing existing methodologies. The code is accessible at https://github.com/WangYuPeng1/MFFNet.
{"title":"Multi-level feature fusion networks for smoke recognition in remote sensing imagery.","authors":"Yupeng Wang, Yongli Wang, Zaki Ahmad Khan, Anqi Huang, Jianghui Sang","doi":"10.1016/j.neunet.2024.107112","DOIUrl":"10.1016/j.neunet.2024.107112","url":null,"abstract":"<p><p>Smoke is a critical indicator of forest fires, often detectable before flames ignite. Accurate smoke identification in remote sensing images is vital for effective forest fire monitoring within Internet of Things (IoT) systems. However, existing detection methods frequently falter in complex real-world scenarios, where variable smoke shapes and sizes, intricate backgrounds, and smoke-like phenomena (e.g., clouds and haze) lead to missed detections and false alarms. To address these challenges, we propose the Multi-level Feature Fusion Network (MFFNet), a novel framework grounded in contrastive learning. MFFNet begins by extracting multi-scale features from remote sensing images using a pre-trained ConvNeXt model, capturing information across different levels of granularity to accommodate variations in smoke appearance. The Attention Feature Enhancement Module further refines these multi-scale features, enhancing fine-grained, discriminative attributes relevant to smoke detection. Subsequently, the Bilinear Feature Fusion Module combines these enriched features, effectively reducing background interference and improving the model's ability to distinguish smoke from visually similar phenomena. Finally, contrastive feature learning is employed to improve robustness against intra-class variations by focusing on unique regions within the smoke patterns. Evaluated on the benchmark dataset USTC_SmokeRS, MFFNet achieves an accuracy of 98.87%. Additionally, our model demonstrates a detection rate of 94.54% on the extended E_SmokeRS dataset, with a low false alarm rate of 3.30%. These results highlight the effectiveness of MFFNet in recognizing smoke in remote sensing images, surpassing existing methodologies. The code is accessible at https://github.com/WangYuPeng1/MFFNet.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107112"},"PeriodicalIF":6.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-06DOI: 10.1016/j.neunet.2024.107096
Xinlei Yu, Ahmed Elazab, Ruiquan Ge, Jichao Zhu, Lingyan Zhang, Gangyong Jia, Qing Wu, Xiang Wan, Lihua Li, Changmiao Wang
Accurately predicting intracerebral hemorrhage (ICH) prognosis is a critical and indispensable step in the clinical management of patients post-ICH. Recently, integrating artificial intelligence, particularly deep learning, has significantly enhanced prediction accuracy and alleviated neurosurgeons from the burden of manual prognosis assessment. However, uni-modal methods have shown suboptimal performance due to the intricate pathophysiology of the ICH. On the other hand, existing cross-modal approaches that incorporate tabular data have often failed to effectively extract complementary information and cross-modal features between modalities, thereby limiting their prognostic capabilities. This study introduces a novel cross-modal network, ICH-PRNet, designed to predict ICH prognosis outcomes. Specifically, we propose a joint-attention interaction encoder that effectively integrates computed tomography images and clinical texts within a unified representational space. Additionally, we define a multi-loss function comprising three components to comprehensively optimize cross-modal fusion capabilities. To balance the training process, we employ a self-adaptive dynamic prioritization algorithm that adjusts the weights of each component, accordingly. Our model, through these innovative designs, establishes robust semantic connections between modalities and uncovers rich, complementary cross-modal information, thereby achieving superior prediction results. Extensive experimental results and comparisons with state-of-the-art methods on both in-house and publicly available datasets unequivocally demonstrate the superiority and efficacy of the proposed method. Our code is at https://github.com/YU-deep/ICH-PRNet.git.
{"title":"ICH-PRNet: a cross-modal intracerebral haemorrhage prognostic prediction method using joint-attention interaction mechanism.","authors":"Xinlei Yu, Ahmed Elazab, Ruiquan Ge, Jichao Zhu, Lingyan Zhang, Gangyong Jia, Qing Wu, Xiang Wan, Lihua Li, Changmiao Wang","doi":"10.1016/j.neunet.2024.107096","DOIUrl":"10.1016/j.neunet.2024.107096","url":null,"abstract":"<p><p>Accurately predicting intracerebral hemorrhage (ICH) prognosis is a critical and indispensable step in the clinical management of patients post-ICH. Recently, integrating artificial intelligence, particularly deep learning, has significantly enhanced prediction accuracy and alleviated neurosurgeons from the burden of manual prognosis assessment. However, uni-modal methods have shown suboptimal performance due to the intricate pathophysiology of the ICH. On the other hand, existing cross-modal approaches that incorporate tabular data have often failed to effectively extract complementary information and cross-modal features between modalities, thereby limiting their prognostic capabilities. This study introduces a novel cross-modal network, ICH-PRNet, designed to predict ICH prognosis outcomes. Specifically, we propose a joint-attention interaction encoder that effectively integrates computed tomography images and clinical texts within a unified representational space. Additionally, we define a multi-loss function comprising three components to comprehensively optimize cross-modal fusion capabilities. To balance the training process, we employ a self-adaptive dynamic prioritization algorithm that adjusts the weights of each component, accordingly. Our model, through these innovative designs, establishes robust semantic connections between modalities and uncovers rich, complementary cross-modal information, thereby achieving superior prediction results. Extensive experimental results and comparisons with state-of-the-art methods on both in-house and publicly available datasets unequivocally demonstrate the superiority and efficacy of the proposed method. Our code is at https://github.com/YU-deep/ICH-PRNet.git.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107096"},"PeriodicalIF":6.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2024-12-31DOI: 10.1016/j.neunet.2024.107098
Zhongyuan Lu, Jin Liu, Miaozhong Xu
Modifying the structure of an existing network is a common method to further improve the performance of the network. However, modifying some layers in network often results in pre-trained weight mismatch, and fine-tune process is time-consuming and resource-inefficient. To address this issue, we propose a novel technique called Identity Model Transformation (IMT), which keep the output before and after transformation in an equal form by rigorous algebraic transformations. This approach ensures the preservation of the original model's performance when modifying layers. Additionally, IMT significantly reduces the total training time required to achieve optimal results while further enhancing network performance. IMT has established a bridge for rapid transformation between model architectures, enabling a model to quickly perform analytic continuation and derive a family of tree-like models with better performance. This model family possesses a greater potential for optimization improvements compared to a single model. Extensive experiments across various object detection tasks validated the effectiveness and efficiency of our proposed IMT solution, which saved 94.76% time in fine-tuning the basic model YOLOv4-Rot on DOTA 1.5 dataset, and by using the IMT method, we saw stable performance improvements of 9.89%, 6.94%, 2.36%, and 4.86% on the four datasets: AI-TOD, DOTA1.5, coco2017, and MRSAText, respectively.
{"title":"Identity Model Transformation for boosting performance and efficiency in object detection network.","authors":"Zhongyuan Lu, Jin Liu, Miaozhong Xu","doi":"10.1016/j.neunet.2024.107098","DOIUrl":"10.1016/j.neunet.2024.107098","url":null,"abstract":"<p><p>Modifying the structure of an existing network is a common method to further improve the performance of the network. However, modifying some layers in network often results in pre-trained weight mismatch, and fine-tune process is time-consuming and resource-inefficient. To address this issue, we propose a novel technique called Identity Model Transformation (IMT), which keep the output before and after transformation in an equal form by rigorous algebraic transformations. This approach ensures the preservation of the original model's performance when modifying layers. Additionally, IMT significantly reduces the total training time required to achieve optimal results while further enhancing network performance. IMT has established a bridge for rapid transformation between model architectures, enabling a model to quickly perform analytic continuation and derive a family of tree-like models with better performance. This model family possesses a greater potential for optimization improvements compared to a single model. Extensive experiments across various object detection tasks validated the effectiveness and efficiency of our proposed IMT solution, which saved 94.76% time in fine-tuning the basic model YOLOv4-Rot on DOTA 1.5 dataset, and by using the IMT method, we saw stable performance improvements of 9.89%, 6.94%, 2.36%, and 4.86% on the four datasets: AI-TOD, DOTA1.5, coco2017, and MRSAText, respectively.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107098"},"PeriodicalIF":6.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142957832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-03DOI: 10.1016/j.neunet.2024.107113
Varun Kumar, Somdatta Goswami, Katiana Kontolati, Michael D Shields, George Em Karniadakis
Multi-task learning (MTL) is an inductive transfer mechanism designed to leverage useful information from multiple tasks to improve generalization performance compared to single-task learning. It has been extensively explored in traditional machine learning to address issues such as data sparsity and overfitting in neural networks. In this work, we apply MTL to problems in science and engineering governed by partial differential equations (PDEs). However, implementing MTL in this context is complex, as it requires task-specific modifications to accommodate various scenarios representing different physical processes. To this end, we present a multi-task deep operator network (MT-DeepONet) to learn solutions across various functional forms of source terms in a PDE and multiple geometries in a single concurrent training session. We introduce modifications in the branch network of the vanilla DeepONet to account for various functional forms of a parameterized coefficient in a PDE. Additionally, we handle parameterized geometries by introducing a binary mask in the branch network and incorporating it into the loss term to improve convergence and generalization to new geometry tasks. Our approach is demonstrated on three benchmark problems: (1) learning different functional forms of the source term in the Fisher equation; (2) learning multiple geometries in a 2D Darcy Flow problem and showcasing better transfer learning capabilities to new geometries; and (3) learning 3D parameterized geometries for a heat transfer problem and demonstrate the ability to predict on new but similar geometries. Our MT-DeepONet framework offers a novel approach to solving PDE problems in engineering and science under a unified umbrella based on synergistic learning that reduces the overall training cost for neural operators.
{"title":"Synergistic learning with multi-task DeepONet for efficient PDE problem solving.","authors":"Varun Kumar, Somdatta Goswami, Katiana Kontolati, Michael D Shields, George Em Karniadakis","doi":"10.1016/j.neunet.2024.107113","DOIUrl":"10.1016/j.neunet.2024.107113","url":null,"abstract":"<p><p>Multi-task learning (MTL) is an inductive transfer mechanism designed to leverage useful information from multiple tasks to improve generalization performance compared to single-task learning. It has been extensively explored in traditional machine learning to address issues such as data sparsity and overfitting in neural networks. In this work, we apply MTL to problems in science and engineering governed by partial differential equations (PDEs). However, implementing MTL in this context is complex, as it requires task-specific modifications to accommodate various scenarios representing different physical processes. To this end, we present a multi-task deep operator network (MT-DeepONet) to learn solutions across various functional forms of source terms in a PDE and multiple geometries in a single concurrent training session. We introduce modifications in the branch network of the vanilla DeepONet to account for various functional forms of a parameterized coefficient in a PDE. Additionally, we handle parameterized geometries by introducing a binary mask in the branch network and incorporating it into the loss term to improve convergence and generalization to new geometry tasks. Our approach is demonstrated on three benchmark problems: (1) learning different functional forms of the source term in the Fisher equation; (2) learning multiple geometries in a 2D Darcy Flow problem and showcasing better transfer learning capabilities to new geometries; and (3) learning 3D parameterized geometries for a heat transfer problem and demonstrate the ability to predict on new but similar geometries. Our MT-DeepONet framework offers a novel approach to solving PDE problems in engineering and science under a unified umbrella based on synergistic learning that reduces the overall training cost for neural operators.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107113"},"PeriodicalIF":6.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2024-12-31DOI: 10.1016/j.neunet.2024.107071
Azadeh Faroughi, Parham Moradi, Mahdi Jalili
Recommendation systems are vital tools for helping users discover content that suits their interests. Collaborative filtering methods are one of the techniques employed for analyzing interactions between users and items, which are typically stored in a sparse matrix. This inherent sparsity poses a challenge because it necessitates accurately and effectively filling in these gaps to provide users with meaningful and personalized recommendations. Our solution addresses sparsity in recommendations by incorporating diverse data sources, including trust statements and an imputation graph. The trust graph captures user relationships and trust levels, working in conjunction with an imputation graph, which is constructed by estimating the missing rates of each user based on the user-item matrix using the average rates of the most similar users. Combined with the user-item rating graph, an attention mechanism fine tunes the influence of these graphs, resulting in more personalized and effective recommendations. Our method consistently outperforms state-of-the-art recommenders in real-world dataset evaluations, underscoring its potential to strengthen recommendation systems and mitigate sparsity challenges.
{"title":"Enhancing Recommender Systems through Imputation and Social-Aware Graph Convolutional Neural Network.","authors":"Azadeh Faroughi, Parham Moradi, Mahdi Jalili","doi":"10.1016/j.neunet.2024.107071","DOIUrl":"10.1016/j.neunet.2024.107071","url":null,"abstract":"<p><p>Recommendation systems are vital tools for helping users discover content that suits their interests. Collaborative filtering methods are one of the techniques employed for analyzing interactions between users and items, which are typically stored in a sparse matrix. This inherent sparsity poses a challenge because it necessitates accurately and effectively filling in these gaps to provide users with meaningful and personalized recommendations. Our solution addresses sparsity in recommendations by incorporating diverse data sources, including trust statements and an imputation graph. The trust graph captures user relationships and trust levels, working in conjunction with an imputation graph, which is constructed by estimating the missing rates of each user based on the user-item matrix using the average rates of the most similar users. Combined with the user-item rating graph, an attention mechanism fine tunes the influence of these graphs, resulting in more personalized and effective recommendations. Our method consistently outperforms state-of-the-art recommenders in real-world dataset evaluations, underscoring its potential to strengthen recommendation systems and mitigate sparsity challenges.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107071"},"PeriodicalIF":6.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-23DOI: 10.1016/j.engappai.2025.110282
Fardin Jalil Piran , Prathyush P. Poduval , Hamza Errahmouni Barkam , Mohsen Imani , Farhad Imani
Machine Learning (ML) models integrated with in-situ sensing offer transformative solutions for defect detection in Additive Manufacturing (AM), but this integration brings critical challenges in safeguarding sensitive data, such as part designs and material compositions. Differential Privacy (DP), which introduces mathematically controlled noise, provides a balance between data utility and privacy. However, black-box Artificial Intelligence (AI) models often obscure how this noise impacts model accuracy, complicating the optimization of privacy–accuracy trade-offs. This study introduces the Differential Privacy-Hyperdimensional Computing (DP-HD) framework, a novel approach combining Explainable AI (XAI) and vector symbolic paradigms to quantify and predict noise effects on accuracy using a Signal-to-Noise Ratio (SNR) metric. DP-HD enables precise tuning of DP noise levels, ensuring an optimal balance between privacy and performance. The framework has been validated using real-world AM data, demonstrating its applicability to industrial environments. Experimental results demonstrate DP-HD’s capability to achieve state-of-the-art accuracy (94.43%) with robust privacy protections in anomaly detection for AM, even under significant noise conditions. Beyond AM, DP-HD holds substantial promise for broader applications in privacy-sensitive domains such as healthcare, financial services, and government data management, where securing sensitive data while maintaining high ML performance is paramount.
{"title":"Explainable Differential Privacy-Hyperdimensional Computing for Balancing Privacy and Transparency in Additive Manufacturing Monitoring","authors":"Fardin Jalil Piran , Prathyush P. Poduval , Hamza Errahmouni Barkam , Mohsen Imani , Farhad Imani","doi":"10.1016/j.engappai.2025.110282","DOIUrl":"10.1016/j.engappai.2025.110282","url":null,"abstract":"<div><div>Machine Learning (ML) models integrated with in-situ sensing offer transformative solutions for defect detection in Additive Manufacturing (AM), but this integration brings critical challenges in safeguarding sensitive data, such as part designs and material compositions. Differential Privacy (DP), which introduces mathematically controlled noise, provides a balance between data utility and privacy. However, black-box Artificial Intelligence (AI) models often obscure how this noise impacts model accuracy, complicating the optimization of privacy–accuracy trade-offs. This study introduces the Differential Privacy-Hyperdimensional Computing (DP-HD) framework, a novel approach combining Explainable AI (XAI) and vector symbolic paradigms to quantify and predict noise effects on accuracy using a Signal-to-Noise Ratio (SNR) metric. DP-HD enables precise tuning of DP noise levels, ensuring an optimal balance between privacy and performance. The framework has been validated using real-world AM data, demonstrating its applicability to industrial environments. Experimental results demonstrate DP-HD’s capability to achieve state-of-the-art accuracy (94.43%) with robust privacy protections in anomaly detection for AM, even under significant noise conditions. Beyond AM, DP-HD holds substantial promise for broader applications in privacy-sensitive domains such as healthcare, financial services, and government data management, where securing sensitive data while maintaining high ML performance is paramount.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"147 ","pages":"Article 110282"},"PeriodicalIF":7.5,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143471426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-22DOI: 10.1016/j.jii.2025.100806
Patrick Bründl , Benedikt Scheffler , Christopher Straub , Micha Stoidner , Huong Giang Nguyen , Jörg Franke
Skilled labor shortages and the growing trend for customized products are increasing the complexity of manufacturing systems. Automation is often proposed to address these challenges, but industries operating under the engineer-to-order, lot-size-one production model often face significant limitations due to the lack of relevant data. This study investigates an approach for the extraction of assembly-relevant information, using only vendor-independent STEP files, and the integration and validation of these information in an exemplary industrial use case. The study shows that different postprocessing approaches of the same segmentation mask can result in significant differences regarding the data quality. This approach improves data quality and facilitates data transferability to components not listed in leading ECAD databases, suggesting broader potential for generalization across different components and use cases. In addition, an end-to-end inference pipeline without proprietary formats ensures high data integrity while approximating the surface of the underlying topology, making it suitable for small and medium-sized companies with limited computing resources. Furthermore, the pipeline presented in this study achieves improved accuracies through enhanced post-segmentation calculation approaches that successfully overcome the typical domain gap between data detected solely on virtual models and their physical application. The study not only achieves the accuracy required for full automation, but also introduces the Spherical Boundary Score (SBS), a metric for evaluating the quality of assembly-relevant information and its application in real-world scenarios.
{"title":"Geometric deep learning as an enabler for data consistency and interoperability in manufacturing","authors":"Patrick Bründl , Benedikt Scheffler , Christopher Straub , Micha Stoidner , Huong Giang Nguyen , Jörg Franke","doi":"10.1016/j.jii.2025.100806","DOIUrl":"10.1016/j.jii.2025.100806","url":null,"abstract":"<div><div>Skilled labor shortages and the growing trend for customized products are increasing the complexity of manufacturing systems. Automation is often proposed to address these challenges, but industries operating under the engineer-to-order, lot-size-one production model often face significant limitations due to the lack of relevant data. This study investigates an approach for the extraction of assembly-relevant information, using only vendor-independent STEP files, and the integration and validation of these information in an exemplary industrial use case. The study shows that different postprocessing approaches of the same segmentation mask can result in significant differences regarding the data quality. This approach improves data quality and facilitates data transferability to components not listed in leading ECAD databases, suggesting broader potential for generalization across different components and use cases. In addition, an end-to-end inference pipeline without proprietary formats ensures high data integrity while approximating the surface of the underlying topology, making it suitable for small and medium-sized companies with limited computing resources. Furthermore, the pipeline presented in this study achieves improved accuracies through enhanced post-segmentation calculation approaches that successfully overcome the typical domain gap between data detected solely on virtual models and their physical application. The study not only achieves the accuracy required for full automation, but also introduces the Spherical Boundary Score (SBS), a metric for evaluating the quality of assembly-relevant information and its application in real-world scenarios.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"44 ","pages":"Article 100806"},"PeriodicalIF":10.4,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143463986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-22DOI: 10.1016/j.engappai.2025.110289
Ritu Raj
A wide variety of fuzzy controllers have evolved over several decades. Several mathematical models of type-1 and interval type-2 fuzzy controllers have been explored. Most of these modelling approaches involved two-/three- dimensional input space. In this work, we have presented a simplified modelling approach for a General Type-2 (GT2) Mamdani and Takagi–Sugeno (TS) fuzzy Proportional Integral Derivative (PID) controllers involving input space of one-dimension. The fuzzy PID controller’s structure is the parallel combination of the Fuzzy Proportional (FP) plus the Fuzzy Integral (FI) plus the Fuzzy Derivative (FD) control actions. Having a parallel PID control structure simplifies the fuzzy ‘’ rules by eliminating the role of ‘’ (triangular norms) and ‘’ (triangular co-norms) operators. This decoupled rule base aids in decreasing the computing complexity of the GT2 fuzzy PID controller. Owing to the one-dimensional input space, the number of tuneable parameters for fuzzy controllers reduces significantly when compared to two- or three-dimensional input spaces. It is also demonstrated that the type-1 (T1) and interval type-2 (IT2) fuzzy controllers are variations of the GT2 fuzzy controller. In order to assess the controller models, we simulate two systems: the unstable first-order system with dead time and the Continuously Stirred Tank Reactor (CSTR). These models, nevertheless, may also be applied to other dynamic processes and systems.
{"title":"One-dimensional input space modelling of a simplified general type-2 Mamdani and Takagi–Sugeno Fuzzy Proportional Integral Derivative controller","authors":"Ritu Raj","doi":"10.1016/j.engappai.2025.110289","DOIUrl":"10.1016/j.engappai.2025.110289","url":null,"abstract":"<div><div>A wide variety of fuzzy controllers have evolved over several decades. Several mathematical models of type-1 and interval type-2 fuzzy controllers have been explored. Most of these modelling approaches involved two-/three- dimensional input space. In this work, we have presented a simplified modelling approach for a General Type-2 (GT2) Mamdani and Takagi–Sugeno (TS) fuzzy Proportional Integral Derivative (PID) controllers involving input space of one-dimension. The fuzzy PID controller’s structure is the parallel combination of the Fuzzy Proportional (FP) plus the Fuzzy Integral (FI) plus the Fuzzy Derivative (FD) control actions. Having a parallel PID control structure simplifies the fuzzy ‘<span><math><mrow><mi>I</mi><mi>F</mi><mo>−</mo><mi>T</mi><mi>H</mi><mi>E</mi><mi>N</mi></mrow></math></span>’ rules by eliminating the role of ‘<span><math><mrow><mi>A</mi><mi>N</mi><mi>D</mi></mrow></math></span>’ (triangular norms) and ‘<span><math><mrow><mi>O</mi><mi>R</mi></mrow></math></span>’ (triangular co-norms) operators. This decoupled rule base aids in decreasing the computing complexity of the GT2 fuzzy PID controller. Owing to the one-dimensional input space, the number of tuneable parameters for fuzzy controllers reduces significantly when compared to two- or three-dimensional input spaces. It is also demonstrated that the type-1 (T1) and interval type-2 (IT2) fuzzy controllers are variations of the GT2 fuzzy controller. In order to assess the controller models, we simulate two systems: the unstable first-order system with dead time and the Continuously Stirred Tank Reactor (CSTR). These models, nevertheless, may also be applied to other dynamic processes and systems.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"147 ","pages":"Article 110289"},"PeriodicalIF":7.5,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant Electronic Medical Records (PEMRs), containing crop disease and environmental data, provide a novel approach for disease diagnosis. However, training a federated learning (FL) model with PEMRs distributed across multiple devices poses challenges, such as opaque aggregation processes, risks of Byzantine faults, and high communication overhead. In this paper, we develop a blockchain-based multi-region federated learning (BMRFL) framework for crop disease diagnosis, incorporating the consortium blockchain technology to ensure that the process is both verifiable and resistant to attacks. We introduce the Musig2 Signature-based Practical Byzantine Fault Tolerance (M2SPBFT) protocol, which leverages the Musig2 algorithm to improve efficiency by reducing communication overhead and streamlining the verification process. Furthermore, we develop a aggregation strategy that boosts the global model's accuracy in diagnosing crop diseases. We constructed PEMR datasets with 23,702 samples from Beijing Plant Clinics to validate the BMRFL. Extensive experiments revealed that the BMRFL framework improved Byzantine fault resistance, lowered consensus communication overhead, and enhanced diagnostic accuracy across districts, achieving a 10.44 % accuracy increase in Haidian over previous methods. These results demonstrate the effectiveness and security of BMRFL in crop disease diagnosis, suggesting its potential for related diagnostic applications.
{"title":"An improved blockchain-based multi-region Federated Learning framework for crop disease diagnosis","authors":"Yuanze Qin , Chang Xu , Qin Zhou , Lingxian Zhang , Yiding Zhang","doi":"10.1016/j.compeleceng.2025.110181","DOIUrl":"10.1016/j.compeleceng.2025.110181","url":null,"abstract":"<div><div>Plant Electronic Medical Records (PEMRs), containing crop disease and environmental data, provide a novel approach for disease diagnosis. However, training a federated learning (FL) model with PEMRs distributed across multiple devices poses challenges, such as opaque aggregation processes, risks of Byzantine faults, and high communication overhead. In this paper, we develop a blockchain-based multi-region federated learning (BMRFL) framework for crop disease diagnosis, incorporating the consortium blockchain technology to ensure that the process is both verifiable and resistant to attacks. We introduce the Musig2 Signature-based Practical Byzantine Fault Tolerance (M2SPBFT) protocol, which leverages the Musig2 algorithm to improve efficiency by reducing communication overhead and streamlining the verification process. Furthermore, we develop a aggregation strategy that boosts the global model's accuracy in diagnosing crop diseases. We constructed PEMR datasets with 23,702 samples from Beijing Plant Clinics to validate the BMRFL. Extensive experiments revealed that the BMRFL framework improved Byzantine fault resistance, lowered consensus communication overhead, and enhanced diagnostic accuracy across districts, achieving a 10.44 % accuracy increase in Haidian over previous methods. These results demonstrate the effectiveness and security of BMRFL in crop disease diagnosis, suggesting its potential for related diagnostic applications.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"123 ","pages":"Article 110181"},"PeriodicalIF":4.0,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143464332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-22DOI: 10.1016/j.eij.2025.100623
Wang Long , Zhao Qixin , Michail A. Zakharov , Sangkeum Lee
Software quality and reliability are very important problems in the field of software production. Software error and defect detection technology is one of the most important research goals in the field of software system reliability that prevents software failure. Therefore, the performance of the defect prediction model in order to accurately predict defects is important in improving and effectiveness of models. In this paper, an attempt has been made to present a hybrid and efficient classification model based on deep learning and metaheuristic models for predicting defects of software. The basis of the suggested model is utilizing a combination of MnasNet (for extracting the semantics of AST tokens) and LSTM (for keeping the key features). It has been improved with the help of an improved variant of Lotus Flower Algorithm (ILFA) so that appropriate coefficients and acceptable results can be produced with the optimization power of metaheuristic algorithms and the learning power of the network. For evaluating the results of the suggested model, the model is applied to a practical dataset and the results are compared with some different methods. The new combined model worked best for the Xerces project, reaching 93% accuracy, which was much better than other models. It also performed well on different projects, improving accuracy by 3.3% to 7.9% after cleaning the data and fixing the issue of uneven class sizes. The results indicate that the proposed model can achieve the highest values of efficiency.
{"title":"Optimizing fault prediction in software based on MnasNet/LSTM optimized by an improved lotus flower algorithm","authors":"Wang Long , Zhao Qixin , Michail A. Zakharov , Sangkeum Lee","doi":"10.1016/j.eij.2025.100623","DOIUrl":"10.1016/j.eij.2025.100623","url":null,"abstract":"<div><div>Software quality and reliability are very important problems in the field of software production. Software error and defect detection technology is one of the most important research goals in the field of software system reliability that prevents software failure. Therefore, the performance of the defect prediction model in order to accurately predict defects is important in improving and effectiveness of models. In this paper, an attempt has been made to present a hybrid and efficient classification model based on deep learning and metaheuristic models for predicting defects of software. The basis of the suggested model is utilizing a combination of MnasNet (for extracting the semantics of AST tokens) and LSTM (for keeping the key features). It has been improved with the help of an improved variant of Lotus Flower Algorithm (ILFA) so that appropriate coefficients and acceptable results can be produced with the optimization power of metaheuristic algorithms and the learning power of the network. For evaluating the results of the suggested model, the model is applied to a practical dataset and the results are compared with some different methods. The new combined model worked best for the Xerces project, reaching 93% accuracy, which was much better than other models. It also performed well on different projects, improving accuracy by 3.3% to 7.9% after cleaning the data and fixing the issue of uneven class sizes. The results indicate that the proposed model can achieve the highest values of efficiency.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"29 ","pages":"Article 100623"},"PeriodicalIF":5.0,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143464251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}