首页 > 最新文献

计算机科学最新文献

英文 中文
IF:
Incremental multi-subreservoirs echo state network control for uncertain aeration process. 不确定曝气过程的增量多子库回波状态网络控制。
IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-04-01 Epub Date: 2025-12-11 DOI: 10.1016/j.neunet.2025.108454
Cuili Yang, Qingrun Zhang, Jiahang Zhang, Jian Tang

It is a critical challenge to realize the control of dissolved oxygen (DO) in uncertain aeration process, due to the inherent nonlinearity, dynamic and unknown disturbances in wastewater treatment process (WWTP). To address this issue, the incremental multi-subreservoirs echo state network (IMSESN) controller is proposed. First, the echo state network (ESN) is employed as the approximator for the unknown system state, and the disturbance observer is constructed to handle the unmeasurable disturbances.Second, to further improve controller adaptability, the error-driven subreservoir increment mechanism is incorporated, in which the new subreservoirs are inserted into the network to enhance uncertainty approximation.Moreover, the minimum learning parameter (MLP) algorithm is introduced to update only the norm of output weights, significantly reducing computational complexity while maintaining control accuracy.Third, the Lyapunov stability theory is applied to demonstrate the semiglobal ultimate boundedness of the closed-loop signals. Under diverse weather conditions, the simulations on the benchmark simulation model no. 1 (BSM1) show that the proposed controller has outperformed existing methods in tracking accuracy and computational efficiency.

由于污水处理过程固有的非线性、动态和未知干扰,实现不确定曝气过程溶解氧(DO)的控制是一个关键挑战。针对这一问题,提出了增量式多子库回波状态网络(imssn)控制器。首先,利用回声状态网络(ESN)作为未知系统状态的逼近器,构造扰动观测器来处理不可测扰动;其次,为了进一步提高控制器的自适应性,引入了误差驱动的子库增量机制,将新的子库插入到网络中,增强不确定性逼近;引入最小学习参数(MLP)算法,只更新输出权值范数,在保持控制精度的同时显著降低了计算复杂度。第三,利用李雅普诺夫稳定性理论证明了闭环信号的半全局极限有界性。在不同天气条件下,对基准模拟模型进行了模拟。1 (BSM1)表明,该控制器在跟踪精度和计算效率方面优于现有方法。
{"title":"Incremental multi-subreservoirs echo state network control for uncertain aeration process.","authors":"Cuili Yang, Qingrun Zhang, Jiahang Zhang, Jian Tang","doi":"10.1016/j.neunet.2025.108454","DOIUrl":"10.1016/j.neunet.2025.108454","url":null,"abstract":"<p><p>It is a critical challenge to realize the control of dissolved oxygen (DO) in uncertain aeration process, due to the inherent nonlinearity, dynamic and unknown disturbances in wastewater treatment process (WWTP). To address this issue, the incremental multi-subreservoirs echo state network (IMSESN) controller is proposed. First, the echo state network (ESN) is employed as the approximator for the unknown system state, and the disturbance observer is constructed to handle the unmeasurable disturbances.Second, to further improve controller adaptability, the error-driven subreservoir increment mechanism is incorporated, in which the new subreservoirs are inserted into the network to enhance uncertainty approximation.Moreover, the minimum learning parameter (MLP) algorithm is introduced to update only the norm of output weights, significantly reducing computational complexity while maintaining control accuracy.Third, the Lyapunov stability theory is applied to demonstrate the semiglobal ultimate boundedness of the closed-loop signals. Under diverse weather conditions, the simulations on the benchmark simulation model no. 1 (BSM1) show that the proposed controller has outperformed existing methods in tracking accuracy and computational efficiency.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"196 ","pages":"108454"},"PeriodicalIF":6.3,"publicationDate":"2026-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145776279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CMMDL: Cross-modal multi-domain learning method for image fusion. 图像融合的跨模态多域学习方法。
IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-04-01 Epub Date: 2025-12-08 DOI: 10.1016/j.neunet.2025.108450
Di Yuan, Huayi Zhu, Rui Chen, Sida Zhou, Jianing Tang, Xiu Shu, Qiao Liu

The rapid development of deep learning provides an excellent solution for end-to-end multi-modal image fusion. However, existing methods mainly focus on the spatial domain and fail to fully utilize valuable information in the frequency domain. Moreover, even if spatial domain learning methods can optimize convergence to an ideal solution, there are still significant differences in high-frequency details between the fused image and the source images. Therefore, we propose a Cross-Modal Multi-Domain Learning (CMMDL) method for image fusion. Firstly, CMMDL employs the Restormer structure equipped with the proposed Spatial-Frequency domain Cascaded Attention (SFCA) mechanism to provide comprehensive and detailed pixel-level features for subsequent multi-domain learning. Then, we propose a dual-domain parallel learning strategy. The proposed Spatial Domain Learning Block (SDLB) focuses on extracting modality-specific features in the spatial domain through a dual-branch invertible neural network, while the proposed Frequency Domain Learning Block (FDLB) captures continuous and precise global contextual information using cross-modal deep perceptual Fourier transforms. Finally, the proposed Heterogeneous Domain Feature Fusion Block (HDFFB) promotes feature interaction and fusion between different domains through various pixel-level attention structures to obtain the final output image. Extensive experiments demonstrate that the proposed CMMDL achieves state-of-the-art performance on multiple datasets. The code is available at: https://github.com/Ist-Zhy/CMMDL.

深度学习的快速发展为端到端多模态图像融合提供了一个很好的解决方案。然而,现有的方法主要集中在空间域,未能充分利用频域的宝贵信息。此外,即使空域学习方法可以优化收敛到理想解,但融合后的图像与源图像在高频细节上仍然存在显著差异。因此,我们提出了一种跨模态多域学习(CMMDL)的图像融合方法。首先,CMMDL采用了带有所提出的空频域级联注意(SFCA)机制的Restormer结构,为后续的多域学习提供全面和详细的像素级特征。然后,我们提出了一种双域并行学习策略。提出的空间域学习块(SDLB)侧重于通过双分支可反转神经网络提取空间域中模态特定特征,而提出的频域学习块(FDLB)使用跨模态深度感知傅里叶变换捕获连续和精确的全局上下文信息。最后,提出的异构域特征融合块(Heterogeneous Domain Feature Fusion Block, HDFFB)通过不同像素级的注意结构促进不同域之间的特征交互和融合,从而获得最终的输出图像。大量的实验表明,所提出的CMMDL在多个数据集上达到了最先进的性能。代码可从https://github.com/Ist-Zhy/CMMDL获得。
{"title":"CMMDL: Cross-modal multi-domain learning method for image fusion.","authors":"Di Yuan, Huayi Zhu, Rui Chen, Sida Zhou, Jianing Tang, Xiu Shu, Qiao Liu","doi":"10.1016/j.neunet.2025.108450","DOIUrl":"10.1016/j.neunet.2025.108450","url":null,"abstract":"<p><p>The rapid development of deep learning provides an excellent solution for end-to-end multi-modal image fusion. However, existing methods mainly focus on the spatial domain and fail to fully utilize valuable information in the frequency domain. Moreover, even if spatial domain learning methods can optimize convergence to an ideal solution, there are still significant differences in high-frequency details between the fused image and the source images. Therefore, we propose a Cross-Modal Multi-Domain Learning (CMMDL) method for image fusion. Firstly, CMMDL employs the Restormer structure equipped with the proposed Spatial-Frequency domain Cascaded Attention (SFCA) mechanism to provide comprehensive and detailed pixel-level features for subsequent multi-domain learning. Then, we propose a dual-domain parallel learning strategy. The proposed Spatial Domain Learning Block (SDLB) focuses on extracting modality-specific features in the spatial domain through a dual-branch invertible neural network, while the proposed Frequency Domain Learning Block (FDLB) captures continuous and precise global contextual information using cross-modal deep perceptual Fourier transforms. Finally, the proposed Heterogeneous Domain Feature Fusion Block (HDFFB) promotes feature interaction and fusion between different domains through various pixel-level attention structures to obtain the final output image. Extensive experiments demonstrate that the proposed CMMDL achieves state-of-the-art performance on multiple datasets. The code is available at: https://github.com/Ist-Zhy/CMMDL.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"196 ","pages":"108450"},"PeriodicalIF":6.3,"publicationDate":"2026-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145776346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RepAttn3D: Re-parameterizing 3D attention with spatiotemporal augmentation for video understanding. reattn3d:利用时空增强重新参数化3D注意力,用于视频理解。
IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-03-01 Epub Date: 2025-11-11 DOI: 10.1016/j.neunet.2025.108313
Xiusheng Lu, Lechao Cheng, Sicheng Zhao, Ying Zheng, Yongheng Wang, Guiguang Ding, Mingli Song

The technique of structural re-parameterization has been widely adopted in Convolutional Neural Networks (CNNs) and Multi-Layer Perceptrons (MLPs) for image-related tasks. However, its integration with attention mechanisms in the video domain remains relatively unexplored. Moreover, video analysis tasks continue to face challenges due to high computational costs, particularly during inference. In this paper, we investigate the re-parameterization of widely-used 3D attention mechanism for video understanding by incorporating a spatiotemporal coherence prior. This approach allows the learning of more robust video features while introducing negligible computational overhead at inference time. Specifically, we propose a SpatioTemporally Augmented 3D Attention (STA-3DA) module as a building block for Transformer architectures. The STA-3DA integrates 3D, spatial, and temporal attention branches during training, serving as an effective replacement for standard 3D attention in existing Transformer models and leading to improved performance. During testing, the different branches are merged into a single 3D attention operation via learned fusion weights, resulting in minimal additional computational cost. Experimental results demonstrate that the proposed method achieves competitive video understanding performance on benchmark datasets such as Kinetics-400 and Something-Something V2.

结构重参数化技术被广泛应用于卷积神经网络(cnn)和多层感知器(mlp)的图像相关任务中。然而,它与视频领域的注意机制的整合仍然相对未被探索。此外,由于高计算成本,特别是在推理过程中,视频分析任务继续面临挑战。在本文中,我们通过结合时空相干先验研究了广泛使用的用于视频理解的3D注意机制的重新参数化。这种方法允许学习更健壮的视频特征,同时在推理时引入可忽略不计的计算开销。具体来说,我们提出了一个时空增强3D注意力(STA-3DA)模块作为Transformer架构的构建块。STA-3DA在训练期间集成了3D、空间和时间注意力分支,作为现有Transformer模型中标准3D注意力的有效替代,并提高了性能。在测试过程中,不同的分支通过学习到的融合权重被合并到一个单一的3D注意力操作中,从而产生最小的额外计算成本。实验结果表明,该方法在Kinetics-400和Something-Something V2等基准数据集上取得了具有竞争力的视频理解性能。
{"title":"RepAttn3D: Re-parameterizing 3D attention with spatiotemporal augmentation for video understanding.","authors":"Xiusheng Lu, Lechao Cheng, Sicheng Zhao, Ying Zheng, Yongheng Wang, Guiguang Ding, Mingli Song","doi":"10.1016/j.neunet.2025.108313","DOIUrl":"10.1016/j.neunet.2025.108313","url":null,"abstract":"<p><p>The technique of structural re-parameterization has been widely adopted in Convolutional Neural Networks (CNNs) and Multi-Layer Perceptrons (MLPs) for image-related tasks. However, its integration with attention mechanisms in the video domain remains relatively unexplored. Moreover, video analysis tasks continue to face challenges due to high computational costs, particularly during inference. In this paper, we investigate the re-parameterization of widely-used 3D attention mechanism for video understanding by incorporating a spatiotemporal coherence prior. This approach allows the learning of more robust video features while introducing negligible computational overhead at inference time. Specifically, we propose a SpatioTemporally Augmented 3D Attention (STA-3DA) module as a building block for Transformer architectures. The STA-3DA integrates 3D, spatial, and temporal attention branches during training, serving as an effective replacement for standard 3D attention in existing Transformer models and leading to improved performance. During testing, the different branches are merged into a single 3D attention operation via learned fusion weights, resulting in minimal additional computational cost. Experimental results demonstrate that the proposed method achieves competitive video understanding performance on benchmark datasets such as Kinetics-400 and Something-Something V2.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"195 ","pages":"108313"},"PeriodicalIF":6.3,"publicationDate":"2026-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145589948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Industrial Electronics Information for Authors IEEE工业电子信息汇刊作者
IF 7.2 1区 工程技术 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2026-02-09 DOI: 10.1109/TIE.2026.3654285
{"title":"IEEE Transactions on Industrial Electronics Information for Authors","authors":"","doi":"10.1109/TIE.2026.3654285","DOIUrl":"https://doi.org/10.1109/TIE.2026.3654285","url":null,"abstract":"","PeriodicalId":13402,"journal":{"name":"IEEE Transactions on Industrial Electronics","volume":"73 2","pages":"C4-C4"},"PeriodicalIF":7.2,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11383834","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146139103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Tech RXIV IEEE技术RXIV
IF 5.7 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-02-09 DOI: 10.1109/MAP.2026.3653156
{"title":"IEEE Tech RXIV","authors":"","doi":"10.1109/MAP.2026.3653156","DOIUrl":"https://doi.org/10.1109/MAP.2026.3653156","url":null,"abstract":"","PeriodicalId":13090,"journal":{"name":"IEEE Antennas and Propagation Magazine","volume":"68 1","pages":"C3-C3"},"PeriodicalIF":5.7,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11385829","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146139121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ninth IEEE RADIO International Conference, 27–30 October 2025, Mauritius [AP-S Committees & Activities] 第九届IEEE无线电国际会议,2025年10月27-30日,毛里求斯[AP-S委员会和活动]
IF 5.7 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-02-09 DOI: 10.1109/MAP.2025.3638524
Vikass Monebhurrun
Provides society information that may include news, reviews or technical notes that should be of interest to practitioners and researchers.
{"title":"Ninth IEEE RADIO International Conference, 27–30 October 2025, Mauritius [AP-S Committees & Activities]","authors":"Vikass Monebhurrun","doi":"10.1109/MAP.2025.3638524","DOIUrl":"https://doi.org/10.1109/MAP.2025.3638524","url":null,"abstract":"Provides society information that may include news, reviews or technical notes that should be of interest to practitioners and researchers.","PeriodicalId":13090,"journal":{"name":"IEEE Antennas and Propagation Magazine","volume":"68 1","pages":"114-115"},"PeriodicalIF":5.7,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11385831","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146139116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Society Officers & Administrative Committee 社团干事及行政委员会
IF 5.7 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-02-09 DOI: 10.1109/MAP.2025.3630913
{"title":"Society Officers & Administrative Committee","authors":"","doi":"10.1109/MAP.2025.3630913","DOIUrl":"https://doi.org/10.1109/MAP.2025.3630913","url":null,"abstract":"","PeriodicalId":13090,"journal":{"name":"IEEE Antennas and Propagation Magazine","volume":"68 1","pages":"116-116"},"PeriodicalIF":5.7,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11385828","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146139108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Industrial Electronics Society Information IEEE工业电子学会信息
IF 7.2 1区 工程技术 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2026-02-09 DOI: 10.1109/TIE.2026.3654291
{"title":"IEEE Industrial Electronics Society Information","authors":"","doi":"10.1109/TIE.2026.3654291","DOIUrl":"https://doi.org/10.1109/TIE.2026.3654291","url":null,"abstract":"","PeriodicalId":13402,"journal":{"name":"IEEE Transactions on Industrial Electronics","volume":"73 2","pages":"C3-C3"},"PeriodicalIF":7.2,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11383830","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146139118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explainable Visual Question Answering: A Survey on Methods, Datasets and Evaluation 可解释的可视化问答:方法、数据集和评估的调查
IF 18.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-02-08 DOI: 10.1016/j.inffus.2026.104215
Yaxian Wang, Qikan Lin, Jiangbo Shi, Yisheng An, Jun Liu, Bifan Wei, Xudong Jiang
{"title":"Explainable Visual Question Answering: A Survey on Methods, Datasets and Evaluation","authors":"Yaxian Wang, Qikan Lin, Jiangbo Shi, Yisheng An, Jun Liu, Bifan Wei, Xudong Jiang","doi":"10.1016/j.inffus.2026.104215","DOIUrl":"https://doi.org/10.1016/j.inffus.2026.104215","url":null,"abstract":"","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"9 1","pages":""},"PeriodicalIF":18.6,"publicationDate":"2026-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A decision support framework for estimating the impact of covariate shift in machine learning systems 用于估计机器学习系统中协变量移位影响的决策支持框架
IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-02-08 DOI: 10.1016/j.dss.2026.114632
Matthijs Meire, Steven Hoornaert, Arno De Caigny, Kristof Coussement
{"title":"A decision support framework for estimating the impact of covariate shift in machine learning systems","authors":"Matthijs Meire, Steven Hoornaert, Arno De Caigny, Kristof Coussement","doi":"10.1016/j.dss.2026.114632","DOIUrl":"https://doi.org/10.1016/j.dss.2026.114632","url":null,"abstract":"","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"94 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2026-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 J. Field Rob. J. Bionic Eng. ACTA INFORM Adv. Rob. AI MAG Ann. Math. Artif. Intell. Appl. Bionics Biomech. APPL INTELL APPL COMPUT ELECTROM APPL ARTIF INTELL Artif. Intell. ARTIF INTELL REV CHEMOMETR INTELL LAB China Commun. CMC-Comput. Mater. Continua Complex Intell. Syst. Comput. Sci. Eng. Commun. ACM COMPUTER Comput. Graphics Forum COMPUTING EMPIR SOFTW ENG Enterp. Inf. Syst. EPJ Data Sci. ETRI J EURASIP J WIREL COMM Evolving Systems FORM METHOD SYST DES Front. Neurorob. FRONT COMPUT SCI-CHI IEEE Trans. Commun. IEEE Trans. Comput. Social Syst. IEEE Trans. Dependable Secure Comput. IEEE Trans. Green Commun. Networking IEEE Trans. Cognit. Commun. Networking IEEE Access IEEE Trans. Comput. IEEE Antennas Propag. Mag. IEEE Micro IEEE Trans. Antennas Propag. IEEE Trans. Control Syst. Technol. IEEE Trans. Big Data IEEE Trans. Cybern. IEEE Internet Comput. IEEE Trans. Affective Comput. IEEE Trans. Emerging Top. Comput. Intell. IEEE SECUR PRIV IEEE Trans. Emerging Top. Comput. IEEE Trans. Aerosp. Electron. Syst. IEEE Trans. Broadcast. IEEE Intell. Syst. IEEE Commun. Lett. IEEE Trans. Autom. Control IEEE Trans. Cloud Comput. IEEE Trans. Evol. Comput. IEEE Trans. Consum. Electron. IEEE Trans. Fuzzy Syst. IEEE Trans. Haptic IEEE Trans. Image Process. IEEE Multimedia IEEE Rob. Autom. Lett. IEEE J. Sel. Areas Commun. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. IETE Tech. Rev. IEEE Trans. Serv. Comput. IEEE Trans. Parallel Distrib. Syst. IEEE Trans. Sustainable Comput. IEEE Trans. Multimedia IEEE Trans. Ind. Inf. IEEE Trans. Neural Networks Learn. Syst. IEEE Trans. Software Eng. IEEE-ACM T AUDIO SPE IEEE Wireless Commun. IEEE Wireless Commun. Lett. IET MICROW ANTENNA P IEEE Trans. Visual Comput. Graphics IEEE Trans. Ind. Electron. IET Optoelectron IEEE Trans. Veh. Technol. IEEE Trans. Netw. Serv. Manage. IEEE Trans. Pattern Anal. Mach. Intell. IEEE Trans. Wireless Commun. IEEE ACM T NETWORK IEEE Trans. Inf. Forensics Secur. IEEE Trans. Inf. Theory IEEE Trans. Knowl. Data Eng. INFORM SYST FRONT INFORMS J COMPUT INFOR Int. J. Comput. Vision Int. J. Approximate Reasoning Int. J. Control Int. J. Commun. Syst. Int. J. Imaging Syst. Technol. Int. J. Fuzzy Syst. Int. J. Intell. Syst. Int. J. Network Manage. Int. J. Parallel Program. Int. J. Social Rob. Int. J. Software Tools Technol. Trans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1