首页 > 最新文献

数学最新文献

英文 中文
IF:
Meromorphic solutions of Bi-Fermat type partial differential and difference equations 比-费马型偏微分方程和差分方程的同态解
IF 1.4 3区 数学 Q1 MATHEMATICS Pub Date : 2024-11-16 DOI: 10.1007/s13324-024-00989-w
Yingchun Gao, Kai Liu

Fermat type functional equation with four terms

$$begin{aligned} f(z)^{n}+g(z)^{n}+h(z)^{n}+k(z)^{n}=1 end{aligned}$$

is difficult to solve completely even if (n=2,3), in which the certain type of the above equation is also interesting and significant. In this paper, we first to consider the Bi-Fermat type quadratic partial differential equation

$$begin{aligned} f(z_{1},z_{2})^{2}+left( frac{partial f(z_{1},z_{2})}{partial z_{1}}right) ^{2}+g(z_{1},z_{2})^{2}+left( frac{partial g(z_{1},z_{2})}{partial z_{1}}right) ^{2}=1 end{aligned}$$

in (mathbb {C}^{2}). In addition, we consider the Bi-Fermat type cubic difference equation

$$begin{aligned} f(z)^{3}+g(z)^{3}+f(z+c)^{3}+g(z+c)^{3}=1 end{aligned}$$

in (mathbb {C}) and obtain partial meromorphic solutions on the above equation.

具有四个项的费马型函数方程 $$begin{aligned} f(z)^{n}+g(z)^{n}+h(z)^{n}+k(z)^{n}=1 end{aligned}$$即使在 (n=2,3)的情况下也很难完全求解,其中上述方程的某种类型也很有趣且意义重大。在本文中,我们首先考虑 Bi-Fermat 型二次偏微分方程 $$begin{aligned} f(z_{1},z_{2})^{2}+left( frac{partial f(z_{1}、z_{2})}{partial z_{1}}right) ^{2}+g(z_{1},z_{2})^{2}+left( ( frac{partial g(z_{1},z_{2})}{partial z_{1}}right) ^{2}=1 end{aligned}$$ in (mathbb {C}^{2}).此外,我们还考虑了 Bi-Fermat 型立方差分方程 $$begin{aligned} f(z)^{3}+g(z)^{3}+f(z+c)^{3}+g(z+c)^{3}=1 end{aligned}$$ in (mathbb {C}/),并得到了上述方程的部分分形解。
{"title":"Meromorphic solutions of Bi-Fermat type partial differential and difference equations","authors":"Yingchun Gao,&nbsp;Kai Liu","doi":"10.1007/s13324-024-00989-w","DOIUrl":"10.1007/s13324-024-00989-w","url":null,"abstract":"<div><p>Fermat type functional equation with four terms </p><div><div><span>$$begin{aligned} f(z)^{n}+g(z)^{n}+h(z)^{n}+k(z)^{n}=1 end{aligned}$$</span></div></div><p>is difficult to solve completely even if <span>(n=2,3)</span>, in which the certain type of the above equation is also interesting and significant. In this paper, we first to consider the Bi-Fermat type quadratic partial differential equation </p><div><div><span>$$begin{aligned} f(z_{1},z_{2})^{2}+left( frac{partial f(z_{1},z_{2})}{partial z_{1}}right) ^{2}+g(z_{1},z_{2})^{2}+left( frac{partial g(z_{1},z_{2})}{partial z_{1}}right) ^{2}=1 end{aligned}$$</span></div></div><p>in <span>(mathbb {C}^{2})</span>. In addition, we consider the Bi-Fermat type cubic difference equation </p><div><div><span>$$begin{aligned} f(z)^{3}+g(z)^{3}+f(z+c)^{3}+g(z+c)^{3}=1 end{aligned}$$</span></div></div><p>in <span>(mathbb {C})</span> and obtain partial meromorphic solutions on the above equation.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 6","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examples of tangent cones of non-collapsed Ricci limit spaces 非折叠利玛窦极限空间切锥实例
IF 1.3 2区 数学 Q1 MATHEMATICS Pub Date : 2024-11-16 DOI: 10.1016/j.na.2024.113699
Philipp Reiser
We give new examples of manifolds that appear as cross sections of tangent cones of non-collapsed Ricci limit spaces. It was shown by Colding–Naber that the homeomorphism types of the tangent cones of a fixed point of such a space do not need to be unique. In fact, they constructed an example in dimension 5 where two different homeomorphism types appear at the same point. In this note, we extend this result and construct limit spaces in all dimensions at least 5 where any finite collection of manifolds that admit core metrics, a type of metric introduced by Perelman and Burdick to study Riemannian metrics of positive Ricci curvature on connected sums, can appear as cross sections of tangent cones of the same point.
我们给出了流形的新例子,这些流形作为非塌缩利玛窦极限空间切锥的横截面出现。科尔丁-纳伯(Colding-Naber)证明,这种空间的定点切锥的同构类型不一定是唯一的。事实上,他们在维度 5 中构造了一个例子,在同一个点上出现了两种不同的同构类型。在本论文中,我们扩展了这一结果,并构建了所有维数至少为 5 的极限空间,在这些空间中,任何接纳核心度量的有限流形集合(核心度量是佩雷尔曼和伯迪克为研究连通和上的正里奇曲率黎曼度量而引入的一种度量类型)都可以作为同一点切向锥的截面出现。
{"title":"Examples of tangent cones of non-collapsed Ricci limit spaces","authors":"Philipp Reiser","doi":"10.1016/j.na.2024.113699","DOIUrl":"10.1016/j.na.2024.113699","url":null,"abstract":"<div><div>We give new examples of manifolds that appear as cross sections of tangent cones of non-collapsed Ricci limit spaces. It was shown by Colding–Naber that the homeomorphism types of the tangent cones of a fixed point of such a space do not need to be unique. In fact, they constructed an example in dimension 5 where two different homeomorphism types appear at the same point. In this note, we extend this result and construct limit spaces in all dimensions at least 5 where any finite collection of manifolds that admit <em>core metrics</em>, a type of metric introduced by Perelman and Burdick to study Riemannian metrics of positive Ricci curvature on connected sums, can appear as cross sections of tangent cones of the same point.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"252 ","pages":"Article 113699"},"PeriodicalIF":1.3,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superconvergence analysis and extrapolation of a BDF2 fully discrete scheme for nonlinear reaction–diffusion equations 非线性反应扩散方程的 BDF2 完全离散方案的超收敛分析和外推法
IF 3.9 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-16 DOI: 10.1016/j.cnsns.2024.108446
Conggang Liang, Dongyang Shi
The main aim of this paper is to propose a 2-step backward differential formula (BDF2) fully discrete scheme with the bilinear Q11 finite element method (FEM) for the nonlinear reaction–diffusion equation. By use of the combination technique of the element’s interpolation and Ritz projection, and through the interpolation post-processing approach, the superclose and global superconvergence estimates with order O(h2+τ2) in H1-norm are deduced rigorously. Furthermore, with the help of the asymptotic error expansion of the Q11 element, a new suitable fully discrete scheme is developed, and the extrapolation result of order O(h3+τ2) in H1-norm is derived, which is one order higher than that of the above traditional superconvergence estimate with respect to h. Here h is the mesh size and τ is the time step. Finally, some numerical results are provided to verify the theoretical analysis. It seems that the extrapolation of the fully discrete finite element scheme has never been seen in the previous studies.
本文的主要目的是针对非线性反应扩散方程,提出一种双线性 Q11 有限元法(FEM)的两步后向微分公式(BDF2)全离散方案。通过使用元素插值和 Ritz 投影的组合技术,并通过插值后处理方法,严格推导出了 H1 规范下阶数为 O(h2+τ2)的超近和全局超收敛估计。此外,借助 Q11 元素的渐近误差扩展,开发了一种新的合适的全离散方案,并推导出了 H1 规范下 O(h3+τ2)阶的外推结果,比上述传统超收敛估计值的 h 值高一个阶。最后,我们提供了一些数值结果来验证理论分析。完全离散有限元方案的外推似乎在以往的研究中从未出现过。
{"title":"Superconvergence analysis and extrapolation of a BDF2 fully discrete scheme for nonlinear reaction–diffusion equations","authors":"Conggang Liang, Dongyang Shi","doi":"10.1016/j.cnsns.2024.108446","DOIUrl":"https://doi.org/10.1016/j.cnsns.2024.108446","url":null,"abstract":"The main aim of this paper is to propose a 2-step backward differential formula (BDF2) fully discrete scheme with the bilinear <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:msub><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:mn>11</mml:mn></mml:mrow></mml:msub></mml:math> finite element method (FEM) for the nonlinear reaction–diffusion equation. By use of the combination technique of the element’s interpolation and Ritz projection, and through the interpolation post-processing approach, the superclose and global superconvergence estimates with order <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:mi>O</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mi>τ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> in <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>-norm are deduced rigorously. Furthermore, with the help of the asymptotic error expansion of the <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:msub><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:mn>11</mml:mn></mml:mrow></mml:msub></mml:math> element, a new suitable fully discrete scheme is developed, and the extrapolation result of order <mml:math altimg=\"si5.svg\" display=\"inline\"><mml:mrow><mml:mi>O</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mi>τ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> in <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>-norm is derived, which is one order higher than that of the above traditional superconvergence estimate with respect to <mml:math altimg=\"si7.svg\" display=\"inline\"><mml:mi>h</mml:mi></mml:math>. Here <mml:math altimg=\"si7.svg\" display=\"inline\"><mml:mi>h</mml:mi></mml:math> is the mesh size and <mml:math altimg=\"si9.svg\" display=\"inline\"><mml:mi>τ</mml:mi></mml:math> is the time step. Finally, some numerical results are provided to verify the theoretical analysis. It seems that the extrapolation of the fully discrete finite element scheme has never been seen in the previous studies.","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"71 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The α$alpha$‐SQG patch problem is illposed in C2,β$C^{2,beta }$ and W2,p$W^{2,p}$ 在 C2,β$C^{2,beta }$ 和 W2,p$W^{2,p}$ 中,α$alpha$-SQG 补丁问题存在问题。
IF 3 1区 数学 Q1 MATHEMATICS Pub Date : 2024-11-16 DOI: 10.1002/cpa.22236
Alexander Kiselev, Xiaoyutao Luo
We consider the patch problem for the ‐(surface quasi‐geostrophic) SQG system with the values and being the 2D Euler and the SQG equations respectively. It is well‐known that the Euler patches are globally wellposed in non‐endpoint Hölder spaces, as well as in , spaces. In stark contrast to the Euler case, we prove that for , the ‐SQG patch problem is strongly illposed in every Hölder space with . Moreover, in a suitable range of regularity, the same strong illposedness holds for every Sobolev space unless .
我们考虑的是-(表面准地养)SQG 系统的补集问题,其值和分别为二维欧拉方程和 SQG 方程。众所周知,欧拉补集在非端点荷尔德空间以及在Ⅳ空间中都是全局良好的。此外,在合适的正则范围内,除非......,否则每个 Sobolev 空间都具有相同的强失稳性。
{"title":"The α$alpha$‐SQG patch problem is illposed in C2,β$C^{2,beta }$ and W2,p$W^{2,p}$","authors":"Alexander Kiselev, Xiaoyutao Luo","doi":"10.1002/cpa.22236","DOIUrl":"https://doi.org/10.1002/cpa.22236","url":null,"abstract":"We consider the patch problem for the ‐(surface quasi‐geostrophic) SQG system with the values and being the 2D Euler and the SQG equations respectively. It is well‐known that the Euler patches are globally wellposed in non‐endpoint Hölder spaces, as well as in , spaces. In stark contrast to the Euler case, we prove that for , the ‐SQG patch problem is strongly illposed in <jats:italic>every</jats:italic> Hölder space with . Moreover, in a suitable range of regularity, the same strong illposedness holds for <jats:italic>every</jats:italic> Sobolev space unless .","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"197 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rainbow short linear forests in edge-colored complete graph 边色完整图中的彩虹短线性森林
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-11-16 DOI: 10.1016/j.dam.2024.11.002
Menglu He, Zemin Jin
An edge-colored graph G is called rainbow if no two edges of G have the same color. For a graph G and a subgraph HG, the anti-Ramsey number AR(G,H) is the maximum number of colors in an edge-coloring of G such that G contains no rainbow copy of H. Recently, the anti-Ramsey problem for disjoint union of graphs received much attention. In particular, several researchers focused on the problem for graphs consisting of small components. In this paper, we continue the work in this direction. We refine the bound and obtain the precise value of AR(Kn,P3tP2) for all n2t+3. Additionally, we determine the value of AR(Kn,2P3tP2) for any integers t1 and n2t+7.
如果一个边着色的图 G 没有两条边的颜色相同,则称其为彩虹图。对于图 G 和子图 H⊆G,反拉姆齐数 AR(G,H) 是指在 G 的边染色中,G 不包含 H 的彩虹副本的最大颜色数。特别是,一些研究人员重点研究了由小分量组成的图的反拉姆齐问题。在本文中,我们将继续这一方向的研究。我们完善了边界,并得到了所有 n≥2t+3 时 AR(Kn,P3∪tP2) 的精确值。此外,我们还确定了任意整数 t≥1 和 n≥2t+7 时的 AR(Kn,2P3∪tP2) 值。
{"title":"Rainbow short linear forests in edge-colored complete graph","authors":"Menglu He,&nbsp;Zemin Jin","doi":"10.1016/j.dam.2024.11.002","DOIUrl":"10.1016/j.dam.2024.11.002","url":null,"abstract":"<div><div>An edge-colored graph <span><math><mi>G</mi></math></span> is called rainbow if no two edges of <span><math><mi>G</mi></math></span> have the same color. For a graph <span><math><mi>G</mi></math></span> and a subgraph <span><math><mrow><mi>H</mi><mo>⊆</mo><mi>G</mi></mrow></math></span>, the anti-Ramsey number <span><math><mrow><mi>A</mi><mi>R</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is the maximum number of colors in an edge-coloring of <span><math><mi>G</mi></math></span> such that <span><math><mi>G</mi></math></span> contains no rainbow copy of <span><math><mi>H</mi></math></span>. Recently, the anti-Ramsey problem for disjoint union of graphs received much attention. In particular, several researchers focused on the problem for graphs consisting of small components. In this paper, we continue the work in this direction. We refine the bound and obtain the precise value of <span><math><mrow><mi>A</mi><mi>R</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∪</mo><mi>t</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>3</mn></mrow></math></span>. Additionally, we determine the value of <span><math><mrow><mi>A</mi><mi>R</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mn>2</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∪</mo><mi>t</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> for any integers <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>7</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 523-536"},"PeriodicalIF":1.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142650685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resistance distances in generalized join graphs 广义连接图中的电阻距离
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-11-16 DOI: 10.1016/j.dam.2024.11.013
Shaohan Xu, Kexiang Xu
<div><div>Let <span><math><mi>H</mi></math></span> be a graph with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span>. The generalized join graph <span><math><mrow><mi>H</mi><mrow><mo>[</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span> is obtained from <span><math><mi>H</mi></math></span> by replacing each vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> with a graph <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and joining each vertex in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> with each vertex in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> provided <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>. If every <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is an independent set of <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> vertices, then we write <span><math><mrow><mi>H</mi><mrow><mo>[</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span> as <span><math><mrow><mi>H</mi><mrow><mo>[</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span>, which is called the blow-up of <span><math><mi>H</mi></math></span>. In this paper we introduce the local complement transformation in electrical networks and obtain an electrically equivalent graph of <span><math><mrow><mi>H</mi><mrow><mo>[</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span>. As their applications, we obtain formulae for resistance distances of some vertex-weighted graphs and give a unified technique to compute resistance distances in <span><math><mrow><mi>H</mi>
设 H 是顶点集 V(H)={v1,v2,...,vk} 的图。将每个顶点 vi 替换为一个图 Gi,并将 Gi 中的每个顶点与 Gj 中的每个顶点连接(条件是 vivj∈E(H)),就得到广义连接图 H[G1,G2,...,Gk]。如果每个 Gi 都是 ni 个顶点的独立集合,那么我们就把 H[G1,G2,...,Gk] 写成 H[n1,n2,...,nk],这就是所谓的 H 放大图。作为其应用,我们得到了一些顶点加权图的电阻距离公式,并给出了一种统一的技术来计算 H[G1,G2,...Gk] 中的电阻距离,当 1≤i≤k 的每个 Gi 都是由匹配顶点和孤立顶点组成的图时,从而得到了当 H 是一些给定图时 H[G1,G2,...Gk] 的电阻距离的封闭公式。
{"title":"Resistance distances in generalized join graphs","authors":"Shaohan Xu,&nbsp;Kexiang Xu","doi":"10.1016/j.dam.2024.11.013","DOIUrl":"10.1016/j.dam.2024.11.013","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; be a graph with vertex set &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The generalized join graph &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is obtained from &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; by replacing each vertex &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; with a graph &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and joining each vertex in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; with each vertex in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; provided &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. If every &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is an independent set of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; vertices, then we write &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, which is called the blow-up of &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. In this paper we introduce the local complement transformation in electrical networks and obtain an electrically equivalent graph of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. As their applications, we obtain formulae for resistance distances of some vertex-weighted graphs and give a unified technique to compute resistance distances in &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"362 ","pages":"Pages 18-33"},"PeriodicalIF":1.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transition from circular to spiral waves and from Mexican hat to upside-down Mexican hat-solutions: The cases of local and nonlocal λ−ω reaction-diffusion-convection fractal systems with variable coefficients 从圆周波到螺旋波的过渡,以及从墨西哥帽到倒置墨西哥帽-解的过渡:具有可变系数的局部和非局部λ-ω反应-扩散-对流分形系统的情况
IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-11-16 DOI: 10.1016/j.chaos.2024.115737
Rami Ahmad El-Nabulsi
Nonlinear partial differential equations admitting traveling wave solutions play an important role in the description and analysis of real-life physical processes and nonlinear phenomena. In this study, we prove that the excitable λωreaction-diffusion-convection system introduced by Kopell and Howard can exhibit, in fractal dimensions, a large variety of spatial patterns. We have considered two independent models: a local reaction-diffusion-convection model characterized by variable coefficients that are subject to particular power laws and a nonlocal reaction-diffusion model characterized by symmetric kernels and a variable diffusion coefficient. Each model is characterized by a number of motivating properties and features. In the 1st model, the amplitude is governed by a 2nd-order differential equation, whereas in the 2nd-model, the amplitude is governed by a 4th-order differential equation, which is, under some conditions, comparable to the Swift-Hohenberg equation with variable coefficients that arise in the study of pattern formation, which belongs to the family of extended Fisher-Kolmogorov stationary equations used to study pattern-forming systems in biological and chemical systems. We report the emergence of superstructures that are suppressed for fractal dimensions much less than unity. These superstructures include superspiral waves characterized by a circular symmetry detected in various oscillatory media and the emergence of reflection of waves that take place in non-uniform reaction-diffusion systems, besides the emergence of micro-spiral waves that emerge at the cellular level. A transition from spiral waves to perfectly rotating waves is observed, besides a transition from Mexican hat shaped solutions to upside-down Mexican hat shaped solutions. The domain size has a very strong impact on the rotational frequency of spiral and circular waves. These new phenomena associated with configuration patterns through a reaction-diffusion-convection system with different scales and characterized by variable coefficients can be applied for modeling a wide class of reaction-diffusion-convection problems. Supplementary properties have been obtained and discussed accordingly.
包含行波解的非线性偏微分方程在描述和分析现实生活中的物理过程和非线性现象中发挥着重要作用。在本研究中,我们证明了由 Kopell 和 Howard 引入的可激发 λ-ω 反应-扩散-对流系统可以在分形维度上表现出多种空间模式。我们考虑了两种独立的模型:一种是局部反应-扩散-对流模型,其特点是系数可变,并服从特定的幂律;另一种是非局部反应-扩散模型,其特点是对称核和可变扩散系数。每种模型都有一些动因和特征。在第 1 个模型中,振幅由 2 阶微分方程控制,而在第 2 个模型中,振幅由 4 阶微分方程控制,在某些条件下,它与模式形成研究中出现的具有可变系数的斯威夫特-霍恩伯格方程相当,后者属于用于研究生物和化学系统中模式形成系统的扩展费舍尔-科尔莫戈罗夫固定方程组。我们报告了在分形维数远小于一的情况下被抑制的超结构的出现。这些超结构包括在各种振荡介质中检测到的以圆形对称为特征的超螺旋波,以及在非均匀反应-扩散系统中出现的反射波,此外还有在细胞水平出现的微螺旋波。除了从墨西哥帽形溶液过渡到倒置的墨西哥帽形溶液之外,还观察到从螺旋波到完全旋转波的过渡。畴的大小对螺旋波和圆周波的旋转频率有很大影响。这些通过不同尺度的反应-扩散-对流系统并以可变系数为特征的与构型模式相关的新现象,可用于模拟各种反应-扩散-对流问题。此外,还获得并讨论了相应的补充性质。
{"title":"Transition from circular to spiral waves and from Mexican hat to upside-down Mexican hat-solutions: The cases of local and nonlocal λ−ω reaction-diffusion-convection fractal systems with variable coefficients","authors":"Rami Ahmad El-Nabulsi","doi":"10.1016/j.chaos.2024.115737","DOIUrl":"10.1016/j.chaos.2024.115737","url":null,"abstract":"<div><div>Nonlinear partial differential equations admitting traveling wave solutions play an important role in the description and analysis of real-life physical processes and nonlinear phenomena. In this study, we prove that the excitable <span><math><mi>λ</mi><mo>−</mo><mi>ω</mi></math></span>reaction-diffusion-convection system introduced by Kopell and Howard can exhibit, in fractal dimensions, a large variety of spatial patterns. We have considered two independent models: a local reaction-diffusion-convection model characterized by variable coefficients that are subject to particular power laws and a nonlocal reaction-diffusion model characterized by symmetric kernels and a variable diffusion coefficient. Each model is characterized by a number of motivating properties and features. In the 1st model, the amplitude is governed by a 2nd-order differential equation, whereas in the 2nd-model, the amplitude is governed by a 4th-order differential equation, which is, under some conditions, comparable to the Swift-Hohenberg equation with variable coefficients that arise in the study of pattern formation, which belongs to the family of extended Fisher-Kolmogorov stationary equations used to study pattern-forming systems in biological and chemical systems. We report the emergence of superstructures that are suppressed for fractal dimensions much less than unity. These superstructures include superspiral waves characterized by a circular symmetry detected in various oscillatory media and the emergence of reflection of waves that take place in non-uniform reaction-diffusion systems, besides the emergence of micro-spiral waves that emerge at the cellular level. A transition from spiral waves to perfectly rotating waves is observed, besides a transition from Mexican hat shaped solutions to upside-down Mexican hat shaped solutions. The domain size has a very strong impact on the rotational frequency of spiral and circular waves. These new phenomena associated with configuration patterns through a reaction-diffusion-convection system with different scales and characterized by variable coefficients can be applied for modeling a wide class of reaction-diffusion-convection problems. Supplementary properties have been obtained and discussed accordingly.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115737"},"PeriodicalIF":5.3,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142650720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partitions of Zm with identical representation functions 具有相同表示函数的 Zm 分区
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-11-16 DOI: 10.1016/j.dam.2024.11.010
Cui-Fang Sun, Zhi Cheng
<div><div>For any positive integer <span><math><mi>m</mi></math></span>, let <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> be the set of residue classes modulo <span><math><mi>m</mi></math></span>. For <span><math><mrow><mi>A</mi><mo>⊆</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>, let the representation function <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> denote the number of solutions of the equation <span><math><mrow><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>=</mo><mover><mrow><mi>a</mi></mrow><mo>¯</mo></mover><mo>+</mo><mover><mrow><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mo>¯</mo></mover></mrow></math></span> with unordered pairs <span><math><mrow><mrow><mo>(</mo><mover><mrow><mi>a</mi></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>∈</mo><mi>A</mi><mo>×</mo><mi>A</mi></mrow></math></span>. Let <span><math><mrow><mi>m</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>α</mi></mrow></msup><mi>M</mi></mrow></math></span>, where <span><math><mi>α</mi></math></span> is a nonnegative integer and <span><math><mi>M</mi></math></span> is a positive odd integer. In this paper, we prove that if <span><math><mrow><mi>M</mi><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mn>2</mn><mo>∤</mo><mi>α</mi></mrow></math></span>, then there exist two distinct sets <span><math><mrow><mi>A</mi><mo>,</mo><mi>B</mi><mo>⊆</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> with <span><math><mrow><mi>A</mi><mo>∪</mo><mi>B</mi><mo>=</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>∖</mo><mrow><mo>{</mo><mover><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>}</mo></mrow><mo>,</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>=</mo><mrow><mo>{</mo><mover><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>}</mo></mrow></mrow></math></span> such that <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>B</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>. We also prove that if <span><math><mrow><mi>M</mi><mo>≥</mo><mn>3</mn></mrow></math>
对于任意正整数 m,让 Zm 成为残差类 modulo m 的集合。对于 A⊆Zm 和 n¯∈Zm,让表示函数 RA(n¯) 表示方程 n¯=a¯+a′¯ 的解的数目,其中无序对 (a¯,a′¯)∈A×A.设 m=2αM,其中 α 为非负整数,M 为正奇数。本文将证明,若 M=1 且 2∤α,则存在两个不同的集合 A,B⊆Zm,其中 A∪B=Zm∖{r1¯},A∩B={r2¯},从而对于所有 n¯∈Zm,RA(n¯)=RB(n¯)。我们还证明,如果 M≥3 或 M=1 且 2∣α,则不存在两个不同的集合 A,B⊆Zm 且 A∪B=Zm∖{r1¯} 和 A∩B={r2¯} 使得 RA(n¯)=RB(n¯) for all n¯∈Zm
{"title":"Partitions of Zm with identical representation functions","authors":"Cui-Fang Sun,&nbsp;Zhi Cheng","doi":"10.1016/j.dam.2024.11.010","DOIUrl":"10.1016/j.dam.2024.11.010","url":null,"abstract":"&lt;div&gt;&lt;div&gt;For any positive integer &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; be the set of residue classes modulo &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. For &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, let the representation function &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; denote the number of solutions of the equation &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with unordered pairs &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a nonnegative integer and &lt;span&gt;&lt;math&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a positive odd integer. In this paper, we prove that if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;∤&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, then there exist two distinct sets &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∖&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We also prove that if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"362 ","pages":"Pages 1-10"},"PeriodicalIF":1.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mean‐field limit of non‐exchangeable systems 不可交换系统的均场极限
IF 3 1区 数学 Q1 MATHEMATICS Pub Date : 2024-11-16 DOI: 10.1002/cpa.22235
Pierre‐Emmanuel Jabin, David Poyato, Juan Soler
This paper deals with the derivation of the mean‐field limit for multi‐agent systems on a large class of sparse graphs. More specifically, the case of non‐exchangeable multi‐agent systems consisting of non‐identical agents is addressed. The analysis does not only involve PDEs and stochastic analysis but also graph theory through a new concept of limits of sparse graphs (extended graphons) that reflect the structure of the connectivities in the network and has critical effects on the collective dynamics. In this article some of the main restrictive hypothesis in the previous literature on the connectivities between the agents (dense graphs) and the cooperation between them (symmetric interactions) are removed.
本文论述了一大类稀疏图上多代理系统均场极限的推导。更具体地说,本文探讨了由非相同代理组成的不可交换多代理系统的情况。分析不仅涉及 PDEs 和随机分析,还通过稀疏图(扩展图子)极限的新概念涉及图论,这反映了网络中的连接性结构,并对集体动力学产生了关键影响。在这篇文章中,以往文献中关于代理之间的连通性(密集图)和代理之间的合作(对称互动)的一些主要限制性假设被删除了。
{"title":"Mean‐field limit of non‐exchangeable systems","authors":"Pierre‐Emmanuel Jabin, David Poyato, Juan Soler","doi":"10.1002/cpa.22235","DOIUrl":"https://doi.org/10.1002/cpa.22235","url":null,"abstract":"This paper deals with the derivation of the mean‐field limit for multi‐agent systems on a large class of sparse graphs. More specifically, the case of non‐exchangeable multi‐agent systems consisting of non‐identical agents is addressed. The analysis does not only involve PDEs and stochastic analysis but also graph theory through a new concept of limits of sparse graphs (extended graphons) that reflect the structure of the connectivities in the network and has critical effects on the collective dynamics. In this article some of the main restrictive hypothesis in the previous literature on the connectivities between the agents (dense graphs) and the cooperation between them (symmetric interactions) are removed.","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"248 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Undercompressive phase transitions for the model of fluid flows in a nozzle with discontinuous cross-sectional area 具有不连续截面积的喷嘴中流体流动模型的欠压缩相变
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-16 DOI: 10.1016/j.nonrwa.2024.104260
Duong Xuan Vinh , Mai Duc Thanh , Nguyen Huu Hiep
Undercompressive phase transitions violating Lax shock inequalities in a model of fluid flows in a nozzle with discontinuous cross-section area are studied. The Riemann problem involving phase transitions is considered. Depending on the choice of admissibility criteria suitable for a specific application, one can obtain a Riemann solver, which may involve nonclassical shock wave. The resonance phenomenon is also observed as multiple shocks waves of the same speed can apparently appear in a single solution. The Riemann problem may admit a unique solution in some region, but may have up to three distinct solutions in other regions.
研究了具有不连续横截面积的喷嘴中流体流动模型中违反拉克斯冲击不等式的欠压相变。考虑了涉及相变的黎曼问题。根据适合特定应用的可接受性标准的选择,可以得到黎曼求解器,其中可能涉及非典型冲击波。共振现象也会被观察到,因为在一个求解中会明显出现多个相同速度的冲击波。黎曼问题在某些区域可能只有一个解,但在其他区域可能有多达三个不同的解。
{"title":"Undercompressive phase transitions for the model of fluid flows in a nozzle with discontinuous cross-sectional area","authors":"Duong Xuan Vinh ,&nbsp;Mai Duc Thanh ,&nbsp;Nguyen Huu Hiep","doi":"10.1016/j.nonrwa.2024.104260","DOIUrl":"10.1016/j.nonrwa.2024.104260","url":null,"abstract":"<div><div>Undercompressive phase transitions violating Lax shock inequalities in a model of fluid flows in a nozzle with discontinuous cross-section area are studied. The Riemann problem involving phase transitions is considered. Depending on the choice of admissibility criteria suitable for a specific application, one can obtain a Riemann solver, which may involve nonclassical shock wave. The resonance phenomenon is also observed as multiple shocks waves of the same speed can apparently appear in a single solution. The Riemann problem may admit a unique solution in some region, but may have up to three distinct solutions in other regions.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104260"},"PeriodicalIF":1.8,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 Dokl. Math. Funct. Anal. Appl. J. Homotopy Relat. Struct. J. Math. Fluid Mech. Math. Phys. Anal. Geom. ACTA MATH APPL SIN-E Adv. Nonlinear Stud. Adv. Appl. Clifford Algebras ADV GEOM ALGEBR LOG+ Am. J. Math. Am. Math. Mon. ANN I H POINCARE-PR APPL CATEGOR STRUCT ANN STAT ANN MATH Appl. Numer. Math. Ann. Mat. Pura Appl. Ann. Global Anal. Geom. Arch. Math. Archiv. Math. Logic BIOMETRICS BIOMETRIKA Bull. Math. Sci Bull. Math. Biol. B IRAN MATH SOC Calc. Var. Partial Differ. Equations Bull. Am. Math. Soc. CALCOLO CHAOS SOLITON FRACT CHAOS COMB PROBAB COMPUT COMMUN STAT-THEOR M Commun. Math. Stat. Commun. Pure Appl. Math. C.R. Math. Commun. Pure Appl. Anal. Demonstratio Mathematica Des. Codes Cryptogr. Duke Math. J. Electron. J. Comb. FILOMAT FORUM MATH Fractal and Fractional Geom. Funct. Anal. GRAPH COMBINATOR INTEGR EQUAT OPER TH INT J ALGEBR COMPUT Interfaces Free Boundaries Int. J. Comput. Math. INT J NUMBER THEORY INVENT MATH Int. Math. Res. Not. Int. Stat. Rev. Isr. J. Math. J. Algebra J ALGEBR COMB J. Appl. Math. Comput. J. Appl. Stat. J. Comb. Des. J. Comput. Graphical Stat. J. Complex Networks J. Differ. Equations Appl. J. Differ. Equations J. Dyn. Differ. Equations J. Differ. Geom. J. Funct. Anal. J. Funct. Spaces J. Global Optim. J.Fourier Anal. Appl. J. Graph Theory J. Inequal. Appl. J. Math. Imaging Vision J. Multivar. Anal. J. Symb. Log. Journal of Survey Statistics and Methodology J. Am. Stat. Assoc. Linear Algebra Appl. Math. Z. MATH SLOVACA Math. Modell. Nat. Phenom. Math. Notes Math. Program. MATHEMATICS-BASEL Math. Ann. Math. Proc. Cambridge Philos. Soc. METHODOL COMPUT APPL Math. Comput. MATHEMATIKA Numer. Methods Partial Differ. Equations PHYSICA D Probab. Theory Relat. Fields Proc. Edinburgh Math. Soc. Proc. Am. Math. Soc. Q. Appl. Math. Ric. Mat. Stochastic Models STAT COMPUT TAIWAN J MATH TOPOL METHOD NONL AN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1