首页 > 最新文献

Journal of Computational and Graphical Statistics最新文献

英文 中文
High-Dimensional Block Diagonal Covariance Structure Detection Using Singular Vectors 利用奇异矢量进行高维块对角线协方差结构检测
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-11-05 DOI: 10.1080/10618600.2024.2422985
Jan O. Bauer
The assumption of independent subvectors arises in many aspects of multivariate analysis. In most real-world applications, however, we lack prior knowledge about the number of subvectors and the sp...
在多元分析的许多方面都会出现独立子向量的假设。然而,在大多数实际应用中,我们对子向量的数量和空间缺乏先验知识。
{"title":"High-Dimensional Block Diagonal Covariance Structure Detection Using Singular Vectors","authors":"Jan O. Bauer","doi":"10.1080/10618600.2024.2422985","DOIUrl":"https://doi.org/10.1080/10618600.2024.2422985","url":null,"abstract":"The assumption of independent subvectors arises in many aspects of multivariate analysis. In most real-world applications, however, we lack prior knowledge about the number of subvectors and the sp...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"12 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-task Learning for Gaussian Graphical Regressions with High Dimensional Covariates 高斯图形回归与高维变量的多任务学习
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-10-31 DOI: 10.1080/10618600.2024.2421246
Jingfei Zhang, Yi Li
Gaussian graphical regression is a powerful approach for regressing the precision matrix of a Gaussian graphical model on covariates, which permits the response variables and covariates to outnumbe...
高斯图形回归是将高斯图形模型的精度矩阵与协变因素进行回归的一种强大方法,它允许响应变量和协变因素的数量大于响应变量和协变因素的数量。
{"title":"Multi-task Learning for Gaussian Graphical Regressions with High Dimensional Covariates","authors":"Jingfei Zhang, Yi Li","doi":"10.1080/10618600.2024.2421246","DOIUrl":"https://doi.org/10.1080/10618600.2024.2421246","url":null,"abstract":"Gaussian graphical regression is a powerful approach for regressing the precision matrix of a Gaussian graphical model on covariates, which permits the response variables and covariates to outnumbe...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"5 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Subsampling for Data Streams with Measurement Constrained Categorical Responses 测量受限分类响应数据流的最优子采样
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-10-31 DOI: 10.1080/10618600.2024.2421990
Jun Yu, Zhiqiang Ye, Mingyao Ai, Ping Ma
High-velocity, large-scale data streams have become pervasive. Frequently, the associated labels for such data prove costly to measure and are not always available upfront. Consequently, the analys...
高速、大规模数据流已变得无处不在。通常情况下,这些数据的相关标签测量成本高昂,而且并不总是可以预先获得。因此,分析...
{"title":"Optimal Subsampling for Data Streams with Measurement Constrained Categorical Responses","authors":"Jun Yu, Zhiqiang Ye, Mingyao Ai, Ping Ma","doi":"10.1080/10618600.2024.2421990","DOIUrl":"https://doi.org/10.1080/10618600.2024.2421990","url":null,"abstract":"High-velocity, large-scale data streams have become pervasive. Frequently, the associated labels for such data prove costly to measure and are not always available upfront. Consequently, the analys...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"87 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Latent Markov time-interaction processes 潜在马尔可夫时间交互过程
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-10-31 DOI: 10.1080/10618600.2024.2421984
Rosario Barone, Alessio Farcomeni, Maura Mezzetti
We present parametric and semiparametric latent Markov time-interaction processes, that are point processes where the occurrence of an event can increase or reduce the probability of future events....
我们提出了参数和半参数潜马尔可夫时间交互过程,即一个事件的发生会增加或减少未来事件发生概率的点过程....。
{"title":"Latent Markov time-interaction processes","authors":"Rosario Barone, Alessio Farcomeni, Maura Mezzetti","doi":"10.1080/10618600.2024.2421984","DOIUrl":"https://doi.org/10.1080/10618600.2024.2421984","url":null,"abstract":"We present parametric and semiparametric latent Markov time-interaction processes, that are point processes where the occurrence of an event can increase or reduce the probability of future events....","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"35 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterogeneous functional regression for subgroup analysis 用于分组分析的异质功能回归
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-10-28 DOI: 10.1080/10618600.2024.2414113
Yeqing Zhou, Fei Jiang
With ever increasing number of features of modern datasets, data heterogeneity is gradually becoming the norm rather than the exception. Whereas classical regressions usually assume all the samples...
随着现代数据集的特征越来越多,数据异质性逐渐成为常态而非例外。经典回归通常假定所有样本都具有异质性。
{"title":"Heterogeneous functional regression for subgroup analysis","authors":"Yeqing Zhou, Fei Jiang","doi":"10.1080/10618600.2024.2414113","DOIUrl":"https://doi.org/10.1080/10618600.2024.2414113","url":null,"abstract":"With ever increasing number of features of modern datasets, data heterogeneity is gradually becoming the norm rather than the exception. Whereas classical regressions usually assume all the samples...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"61 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-label Random Subspace Ensemble Classification1 多标签随机子空间集合分类1
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-10-28 DOI: 10.1080/10618600.2024.2421248
Fan Bi, Jianan Zhu, Yang Feng
In this work, we develop a new ensemble learning framework, multi-label Random Subspace Ensemble (mRaSE), for multi-label classification. Given a base classifier (e.g., multinomial logistic regress...
在这项工作中,我们为多标签分类开发了一种新的集合学习框架--多标签随机子空间集合(mRaSE)。给定一个基础分类器(如多项式逻辑回归分类器),然后将该分类器与其他分类器进行组合。
{"title":"Multi-label Random Subspace Ensemble Classification1","authors":"Fan Bi, Jianan Zhu, Yang Feng","doi":"10.1080/10618600.2024.2421248","DOIUrl":"https://doi.org/10.1080/10618600.2024.2421248","url":null,"abstract":"In this work, we develop a new ensemble learning framework, multi-label Random Subspace Ensemble (mRaSE), for multi-label classification. Given a base classifier (e.g., multinomial logistic regress...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"62 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sampling random graphs with specified degree sequences 对具有指定度序列的随机图形进行采样
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-10-24 DOI: 10.1080/10618600.2024.2418817
Upasana Dutta, Bailey K. Fosdick, Aaron Clauset
The configuration model is a standard tool for uniformly generating random graphs with a specified degree sequence, and is often used as a null model to evaluate how much of an observed network’s s...
配置模型是一种标准工具,用于均匀生成具有指定阶数序列的随机图,并且经常被用作一种空模型,以评估观察到的网络中有多少...
{"title":"Sampling random graphs with specified degree sequences","authors":"Upasana Dutta, Bailey K. Fosdick, Aaron Clauset","doi":"10.1080/10618600.2024.2418817","DOIUrl":"https://doi.org/10.1080/10618600.2024.2418817","url":null,"abstract":"The configuration model is a standard tool for uniformly generating random graphs with a specified degree sequence, and is often used as a null model to evaluate how much of an observed network’s s...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"27 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distortion corrected kernel density estimator on Riemannian manifolds 黎曼流形上的失真校正核密度估算器
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-10-24 DOI: 10.1080/10618600.2024.2415543
Fan Cheng, Rob J Hyndman, Anastasios Panagiotelis
Manifold learning obtains a low-dimensional representation of an underlying Riemannian manifold supporting high-dimensional data. Kernel density estimates of the low-dimensional embedding with a fi...
流形学习可获得支持高维数据的底层黎曼流形的低维表示。低维嵌入的核密度估计与高维嵌入的核密度估计是一致的。
{"title":"Distortion corrected kernel density estimator on Riemannian manifolds","authors":"Fan Cheng, Rob J Hyndman, Anastasios Panagiotelis","doi":"10.1080/10618600.2024.2415543","DOIUrl":"https://doi.org/10.1080/10618600.2024.2415543","url":null,"abstract":"Manifold learning obtains a low-dimensional representation of an underlying Riemannian manifold supporting high-dimensional data. Kernel density estimates of the low-dimensional embedding with a fi...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"212 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Qini Curves for Multi-Armed Treatment Rules 多臂处理规则的基尼曲线
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-10-24 DOI: 10.1080/10618600.2024.2418820
Erik Sverdrup, Han Wu, Susan Athey, Stefan Wager
Qini curves have emerged as an attractive and popular approach for evaluating the benefit of data-driven targeting rules for treatment allocation. We propose a generalization of the Qini curve to m...
基尼曲线已成为评估数据驱动的治疗分配目标规则效益的一种有吸引力的流行方法。我们提出了一种对基尼曲线的概括,以评估数据驱动的治疗分配目标规则的效益。
{"title":"Qini Curves for Multi-Armed Treatment Rules","authors":"Erik Sverdrup, Han Wu, Susan Athey, Stefan Wager","doi":"10.1080/10618600.2024.2418820","DOIUrl":"https://doi.org/10.1080/10618600.2024.2418820","url":null,"abstract":"Qini curves have emerged as an attractive and popular approach for evaluating the benefit of data-driven targeting rules for treatment allocation. We propose a generalization of the Qini curve to m...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"10 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Sampling From the Watson Distribution in Arbitrary Dimensions 从任意维度的沃森分布中高效取样
IF 2.4 2区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-10-23 DOI: 10.1080/10618600.2024.2416521
Lukas Sablica, Kurt Hornik, Josef Leydold
In this paper, we present two efficient methods for sampling from the Watson distribution in arbitrary dimensions. The first method adapts the rejection sampling algorithm from Kent et al. (2018), ...
本文提出了两种从任意维度的沃森分布中采样的高效方法。第一种方法采用了 Kent 等人(2018)的拒绝采样算法, ...
{"title":"Efficient Sampling From the Watson Distribution in Arbitrary Dimensions","authors":"Lukas Sablica, Kurt Hornik, Josef Leydold","doi":"10.1080/10618600.2024.2416521","DOIUrl":"https://doi.org/10.1080/10618600.2024.2416521","url":null,"abstract":"In this paper, we present two efficient methods for sampling from the Watson distribution in arbitrary dimensions. The first method adapts the rejection sampling algorithm from Kent et al. (2018), ...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"105 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Computational and Graphical Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1