首页 > 最新文献

计算机科学最新文献

英文 中文
IF:
Bias-Free? An Empirical Study on Ethnicity, Gender, and Age Fairness in Deepfake Detection 没有偏见吗?深度造假检测中种族、性别和年龄公平性的实证研究
IF 16.6 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-02-09 DOI: 10.1145/3796544
Aditi Panda, Tanusree Ghosh, Tushar Choudhary, Ruchira Naskar
In this study, we evaluate potential demographic bias in state-of-the-art deepfake image detection models across three key attributes: age, ethnicity, and gender. Unlike prior works that retrain detectors or analyse forensic manipulations, we systematically assess multiple pretrained checkpoints of leading deepfake detectors, each trained on different datasets, to ensure an unbiased evaluation framework. Our experiments employ synthetic images generated by recent diffusion and autoregressive models, alongside real images from balanced datasets, to measure subgroup-specific detection performance. Results reveal no systematic bias across demographic categories—variations in accuracy and precision remain within small statistical margins across all detectors and checkpoints. We further provide a taxonomy of image generative models, highlighting their evolution from pixel-space to latent-space diffusion architectures, to contextualize the diversity of synthetic data used in our evaluation. Overall, our findings suggest that modern deepfake image detectors, when tested in a cross-demographic setting using pretrained checkpoints, exhibit robust and fair performance across age, ethnicity, and gender.
在本研究中,我们评估了最先进的深度假图像检测模型中三个关键属性的潜在人口统计学偏差:年龄、种族和性别。与之前重新训练检测器或分析法医操作的工作不同,我们系统地评估了领先深度假检测器的多个预训练检查点,每个检查点都在不同的数据集上进行了训练,以确保公正的评估框架。我们的实验使用由最近的扩散和自回归模型生成的合成图像,以及来自平衡数据集的真实图像,来测量亚群特定的检测性能。结果显示,在人口统计类别中没有系统性偏差——在所有检测器和检查点中,准确度和精度的变化仍然在很小的统计范围内。我们进一步提供了图像生成模型的分类,强调了它们从像素空间到潜在空间扩散架构的演变,以将我们评估中使用的合成数据的多样性背景化。总的来说,我们的研究结果表明,当使用预训练的检查点在跨人口统计环境中进行测试时,现代深度假图像检测器在年龄、种族和性别方面都表现出稳健和公平的表现。
{"title":"Bias-Free? An Empirical Study on Ethnicity, Gender, and Age Fairness in Deepfake Detection","authors":"Aditi Panda, Tanusree Ghosh, Tushar Choudhary, Ruchira Naskar","doi":"10.1145/3796544","DOIUrl":"https://doi.org/10.1145/3796544","url":null,"abstract":"In this study, we evaluate potential demographic bias in state-of-the-art deepfake image detection models across three key attributes: age, ethnicity, and gender. Unlike prior works that retrain detectors or analyse forensic manipulations, we systematically assess multiple pretrained checkpoints of leading deepfake detectors, each trained on different datasets, to ensure an unbiased evaluation framework. Our experiments employ synthetic images generated by recent diffusion and autoregressive models, alongside real images from balanced datasets, to measure subgroup-specific detection performance. Results reveal no systematic bias across demographic categories—variations in accuracy and precision remain within small statistical margins across all detectors and checkpoints. We further provide a taxonomy of image generative models, highlighting their evolution from pixel-space to latent-space diffusion architectures, to contextualize the diversity of synthetic data used in our evaluation. Overall, our findings suggest that modern deepfake image detectors, when tested in a cross-demographic setting using pretrained checkpoints, exhibit robust and fair performance across age, ethnicity, and gender.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"40 4 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146153682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Society Officers & Administrative Committee 社团干事及行政委员会
IF 5.7 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-02-09 DOI: 10.1109/MAP.2025.3630913
{"title":"Society Officers & Administrative Committee","authors":"","doi":"10.1109/MAP.2025.3630913","DOIUrl":"https://doi.org/10.1109/MAP.2025.3630913","url":null,"abstract":"","PeriodicalId":13090,"journal":{"name":"IEEE Antennas and Propagation Magazine","volume":"68 1","pages":"116-116"},"PeriodicalIF":5.7,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11385828","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146139108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible Wearable Filtering Antenna With Stable Performance for IoT Devices 物联网设备性能稳定的柔性可穿戴滤波天线
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2026-02-09 DOI: 10.1109/jiot.2026.3662407
Runkai Song, Fan Qin, Wenchi Cheng, Steven Gao
{"title":"Flexible Wearable Filtering Antenna With Stable Performance for IoT Devices","authors":"Runkai Song, Fan Qin, Wenchi Cheng, Steven Gao","doi":"10.1109/jiot.2026.3662407","DOIUrl":"https://doi.org/10.1109/jiot.2026.3662407","url":null,"abstract":"","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":"60 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146145973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2026 Conference Calendar 2026年会议日程表
IF 11.2 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-02-09 DOI: 10.1109/mcom.2026.11373798
{"title":"2026 Conference Calendar","authors":"","doi":"10.1109/mcom.2026.11373798","DOIUrl":"https://doi.org/10.1109/mcom.2026.11373798","url":null,"abstract":"","PeriodicalId":55030,"journal":{"name":"IEEE Communications Magazine","volume":"4 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximate Predictive Control Barrier Function for Discrete-Time Systems 离散时间系统的近似预测控制障碍函数
IF 6.8 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2026-02-09 DOI: 10.1109/tac.2026.3662563
Alexandre Didier, Melanie N. Zeilinger
{"title":"Approximate Predictive Control Barrier Function for Discrete-Time Systems","authors":"Alexandre Didier, Melanie N. Zeilinger","doi":"10.1109/tac.2026.3662563","DOIUrl":"https://doi.org/10.1109/tac.2026.3662563","url":null,"abstract":"","PeriodicalId":13201,"journal":{"name":"IEEE Transactions on Automatic Control","volume":"133 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust and energy-aware detection of Mirai botnet for future 6G-enabled IoT networks 为未来支持6g的物联网网络提供强大的Mirai僵尸网络和能量感知检测
IF 8.7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2026-02-09 DOI: 10.1016/j.jnca.2026.104438
Zainab Alwaisi, Tanesh Kumar, Simone Soderi
Next-generation IoT wireless communication systems emphasise the importance and urgent need for energy-efficient security measures, thus requiring a balanced approach to address growing security vulnerabilities and fulfil energy demands in advanced wireless communication networks. However, the evolution of 6G networks and their integration with advanced technologies will revolutionise the IoT ecosystem while simultaneously introducing new security threats such as the Mirai malware, which targets IoT devices, infects multiple nodes, and depletes computational and energy resources. This study introduces a novel security algorithm designed to minimise energy consumption while effectively detecting botnet attacks at the smart device level. This research examines four distinct types of Mirai botnet attacks: scan, UDP, TCP, and ACK flooding.The experimental evaluation was conducted using real IoT device data collected from a Raspberry Pi setup combined with network traffic traces simulating the four Mirai attack scenarios to ensure realistic and reproducible results. Two ML algorithms, SVM and KNN, are employed to detect these botnet attacks, with each algorithm’s detection accuracy and energy efficiency thoroughly assessed. Results indicate that the proposed approach significantly enhances smart device security while minimising energy use. Findings show that the KNN algorithm outperforms SVM in terms of accuracy and energy efficiency for detecting Mirai botnet attacks, achieving detection rates above 99% across various attack types. This study highlights the importance of selecting suitable security techniques for IoT networks to address the evolving threats and energy demands of 6G-enabled wireless communication systems, providing valuable insights for future research.
下一代物联网无线通信系统强调节能安全措施的重要性和迫切需要,因此需要一种平衡的方法来解决日益增长的安全漏洞并满足先进无线通信网络的能源需求。然而,6G网络的发展及其与先进技术的集成将彻底改变物联网生态系统,同时引入新的安全威胁,如Mirai恶意软件,它以物联网设备为目标,感染多个节点,并消耗计算和能源资源。本研究介绍了一种新的安全算法,旨在最大限度地减少能源消耗,同时有效地检测智能设备级别的僵尸网络攻击。这项研究检查了四种不同类型的Mirai僵尸网络攻击:扫描、UDP、TCP和ACK洪水。实验评估使用了从树莓派设置中收集的真实物联网设备数据,并结合网络流量轨迹模拟了四种Mirai攻击场景,以确保结果的真实性和可重复性。采用SVM和KNN两种机器学习算法来检测这些僵尸网络攻击,并对每种算法的检测精度和能量效率进行了全面评估。结果表明,所提出的方法显着提高了智能设备的安全性,同时最大限度地减少了能源使用。研究结果表明,KNN算法在检测Mirai僵尸网络攻击的准确率和能量效率方面优于SVM,在各种攻击类型中检测率均在99%以上。该研究强调了为物联网网络选择合适的安全技术以应对不断变化的威胁和支持6g无线通信系统的能源需求的重要性,为未来的研究提供了有价值的见解。
{"title":"Robust and energy-aware detection of Mirai botnet for future 6G-enabled IoT networks","authors":"Zainab Alwaisi, Tanesh Kumar, Simone Soderi","doi":"10.1016/j.jnca.2026.104438","DOIUrl":"https://doi.org/10.1016/j.jnca.2026.104438","url":null,"abstract":"Next-generation IoT wireless communication systems emphasise the importance and urgent need for energy-efficient security measures, thus requiring a balanced approach to address growing security vulnerabilities and fulfil energy demands in advanced wireless communication networks. However, the evolution of 6G networks and their integration with advanced technologies will revolutionise the IoT ecosystem while simultaneously introducing new security threats such as the Mirai malware, which targets IoT devices, infects multiple nodes, and depletes computational and energy resources. This study introduces a novel security algorithm designed to minimise energy consumption while effectively detecting botnet attacks at the smart device level. This research examines four distinct types of Mirai botnet attacks: scan, UDP, TCP, and ACK flooding.The experimental evaluation was conducted using real IoT device data collected from a Raspberry Pi setup combined with network traffic traces simulating the four Mirai attack scenarios to ensure realistic and reproducible results. Two ML algorithms, SVM and KNN, are employed to detect these botnet attacks, with each algorithm’s detection accuracy and energy efficiency thoroughly assessed. Results indicate that the proposed approach significantly enhances smart device security while minimising energy use. Findings show that the KNN algorithm outperforms SVM in terms of accuracy and energy efficiency for detecting Mirai botnet attacks, achieving detection rates above 99% across various attack types. This study highlights the importance of selecting suitable security techniques for IoT networks to address the evolving threats and energy demands of 6G-enabled wireless communication systems, providing valuable insights for future research.","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"1 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kangaroo: A Powerful Video-Language Model Supporting Long-context Video Input 袋鼠:支持长上下文视频输入的强大视频语言模型
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-02-09 DOI: 10.1007/s11263-025-02620-2
Jiajun Liu, Yibing Wang, Hanghang Ma, Xiaoping Wu, Xiaoqi Ma, Xiaoming Wei, Jianbin Jiao, Enhua Wu, Jie Hu
{"title":"Kangaroo: A Powerful Video-Language Model Supporting Long-context Video Input","authors":"Jiajun Liu, Yibing Wang, Hanghang Ma, Xiaoping Wu, Xiaoqi Ma, Xiaoming Wei, Jianbin Jiao, Enhua Wu, Jie Hu","doi":"10.1007/s11263-025-02620-2","DOIUrl":"https://doi.org/10.1007/s11263-025-02620-2","url":null,"abstract":"","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"93 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AquaticCLIP: A Vision-Language Foundation Model and Dataset for Underwater Scene Analysis aquaticlip:用于水下场景分析的视觉语言基础模型和数据集
IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-02-09 DOI: 10.1109/tnnls.2026.3657138
Basit Alawode, Iyyakutti Iyappan Ganapathi, Sajid Javed, Mohammed Bennamoun, Arif Mahmood
{"title":"AquaticCLIP: A Vision-Language Foundation Model and Dataset for Underwater Scene Analysis","authors":"Basit Alawode, Iyyakutti Iyappan Ganapathi, Sajid Javed, Mohammed Bennamoun, Arif Mahmood","doi":"10.1109/tnnls.2026.3657138","DOIUrl":"https://doi.org/10.1109/tnnls.2026.3657138","url":null,"abstract":"","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"161 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE What If IEEE What If
IF 11.2 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-02-09 DOI: 10.1109/mcom.2026.11373812
{"title":"IEEE What If","authors":"","doi":"10.1109/mcom.2026.11373812","DOIUrl":"https://doi.org/10.1109/mcom.2026.11373812","url":null,"abstract":"","PeriodicalId":55030,"journal":{"name":"IEEE Communications Magazine","volume":"284 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RACER: Fast and Accurate Time Series Clustering with Random Convolutional Kernels and Ensemble Methods RACER:基于随机卷积核和集成方法的快速准确时间序列聚类
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2026-02-09 DOI: 10.1109/jiot.2026.3662758
Haowen Zhang, Juan Li, Qing Yao
{"title":"RACER: Fast and Accurate Time Series Clustering with Random Convolutional Kernels and Ensemble Methods","authors":"Haowen Zhang, Juan Li, Qing Yao","doi":"10.1109/jiot.2026.3662758","DOIUrl":"https://doi.org/10.1109/jiot.2026.3662758","url":null,"abstract":"","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":"314 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 J. Field Rob. J. Bionic Eng. ACTA INFORM Adv. Rob. AI MAG Ann. Math. Artif. Intell. Appl. Bionics Biomech. APPL INTELL APPL COMPUT ELECTROM APPL ARTIF INTELL Artif. Intell. ARTIF INTELL REV CHEMOMETR INTELL LAB China Commun. CMC-Comput. Mater. Continua Complex Intell. Syst. Comput. Sci. Eng. Commun. ACM COMPUTER Comput. Graphics Forum COMPUTING EMPIR SOFTW ENG Enterp. Inf. Syst. EPJ Data Sci. ETRI J EURASIP J WIREL COMM Evolving Systems FORM METHOD SYST DES Front. Neurorob. FRONT COMPUT SCI-CHI IEEE Trans. Commun. IEEE Trans. Comput. Social Syst. IEEE Trans. Dependable Secure Comput. IEEE Trans. Green Commun. Networking IEEE Trans. Cognit. Commun. Networking IEEE Access IEEE Trans. Comput. IEEE Antennas Propag. Mag. IEEE Micro IEEE Trans. Antennas Propag. IEEE Trans. Control Syst. Technol. IEEE Trans. Big Data IEEE Trans. Cybern. IEEE Internet Comput. IEEE Trans. Affective Comput. IEEE Trans. Emerging Top. Comput. Intell. IEEE SECUR PRIV IEEE Trans. Emerging Top. Comput. IEEE Trans. Aerosp. Electron. Syst. IEEE Trans. Broadcast. IEEE Intell. Syst. IEEE Commun. Lett. IEEE Trans. Autom. Control IEEE Trans. Cloud Comput. IEEE Trans. Evol. Comput. IEEE Trans. Consum. Electron. IEEE Trans. Fuzzy Syst. IEEE Trans. Haptic IEEE Trans. Image Process. IEEE Multimedia IEEE Rob. Autom. Lett. IEEE J. Sel. Areas Commun. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. IETE Tech. Rev. IEEE Trans. Serv. Comput. IEEE Trans. Parallel Distrib. Syst. IEEE Trans. Sustainable Comput. IEEE Trans. Multimedia IEEE Trans. Ind. Inf. IEEE Trans. Neural Networks Learn. Syst. IEEE Trans. Software Eng. IEEE-ACM T AUDIO SPE IEEE Wireless Commun. IEEE Wireless Commun. Lett. IET MICROW ANTENNA P IEEE Trans. Visual Comput. Graphics IEEE Trans. Ind. Electron. IET Optoelectron IEEE Trans. Veh. Technol. IEEE Trans. Netw. Serv. Manage. IEEE Trans. Pattern Anal. Mach. Intell. IEEE Trans. Wireless Commun. IEEE ACM T NETWORK IEEE Trans. Inf. Forensics Secur. IEEE Trans. Inf. Theory IEEE Trans. Knowl. Data Eng. INFORM SYST FRONT INFORMS J COMPUT INFOR Int. J. Comput. Vision Int. J. Approximate Reasoning Int. J. Control Int. J. Commun. Syst. Int. J. Imaging Syst. Technol. Int. J. Fuzzy Syst. Int. J. Intell. Syst. Int. J. Network Manage. Int. J. Parallel Program. Int. J. Social Rob. Int. J. Software Tools Technol. Trans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1