首页 > 最新文献

计算机科学最新文献

英文 中文
IF:
2026 Conference Calendar 2026年会议日程表
IF 11.2 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-02-09 DOI: 10.1109/mcom.2026.11373798
{"title":"2026 Conference Calendar","authors":"","doi":"10.1109/mcom.2026.11373798","DOIUrl":"https://doi.org/10.1109/mcom.2026.11373798","url":null,"abstract":"","PeriodicalId":55030,"journal":{"name":"IEEE Communications Magazine","volume":"4 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximate Predictive Control Barrier Function for Discrete-Time Systems 离散时间系统的近似预测控制障碍函数
IF 6.8 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2026-02-09 DOI: 10.1109/tac.2026.3662563
Alexandre Didier, Melanie N. Zeilinger
{"title":"Approximate Predictive Control Barrier Function for Discrete-Time Systems","authors":"Alexandre Didier, Melanie N. Zeilinger","doi":"10.1109/tac.2026.3662563","DOIUrl":"https://doi.org/10.1109/tac.2026.3662563","url":null,"abstract":"","PeriodicalId":13201,"journal":{"name":"IEEE Transactions on Automatic Control","volume":"133 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust and energy-aware detection of Mirai botnet for future 6G-enabled IoT networks 为未来支持6g的物联网网络提供强大的Mirai僵尸网络和能量感知检测
IF 8.7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2026-02-09 DOI: 10.1016/j.jnca.2026.104438
Zainab Alwaisi, Tanesh Kumar, Simone Soderi
Next-generation IoT wireless communication systems emphasise the importance and urgent need for energy-efficient security measures, thus requiring a balanced approach to address growing security vulnerabilities and fulfil energy demands in advanced wireless communication networks. However, the evolution of 6G networks and their integration with advanced technologies will revolutionise the IoT ecosystem while simultaneously introducing new security threats such as the Mirai malware, which targets IoT devices, infects multiple nodes, and depletes computational and energy resources. This study introduces a novel security algorithm designed to minimise energy consumption while effectively detecting botnet attacks at the smart device level. This research examines four distinct types of Mirai botnet attacks: scan, UDP, TCP, and ACK flooding.The experimental evaluation was conducted using real IoT device data collected from a Raspberry Pi setup combined with network traffic traces simulating the four Mirai attack scenarios to ensure realistic and reproducible results. Two ML algorithms, SVM and KNN, are employed to detect these botnet attacks, with each algorithm’s detection accuracy and energy efficiency thoroughly assessed. Results indicate that the proposed approach significantly enhances smart device security while minimising energy use. Findings show that the KNN algorithm outperforms SVM in terms of accuracy and energy efficiency for detecting Mirai botnet attacks, achieving detection rates above 99% across various attack types. This study highlights the importance of selecting suitable security techniques for IoT networks to address the evolving threats and energy demands of 6G-enabled wireless communication systems, providing valuable insights for future research.
下一代物联网无线通信系统强调节能安全措施的重要性和迫切需要,因此需要一种平衡的方法来解决日益增长的安全漏洞并满足先进无线通信网络的能源需求。然而,6G网络的发展及其与先进技术的集成将彻底改变物联网生态系统,同时引入新的安全威胁,如Mirai恶意软件,它以物联网设备为目标,感染多个节点,并消耗计算和能源资源。本研究介绍了一种新的安全算法,旨在最大限度地减少能源消耗,同时有效地检测智能设备级别的僵尸网络攻击。这项研究检查了四种不同类型的Mirai僵尸网络攻击:扫描、UDP、TCP和ACK洪水。实验评估使用了从树莓派设置中收集的真实物联网设备数据,并结合网络流量轨迹模拟了四种Mirai攻击场景,以确保结果的真实性和可重复性。采用SVM和KNN两种机器学习算法来检测这些僵尸网络攻击,并对每种算法的检测精度和能量效率进行了全面评估。结果表明,所提出的方法显着提高了智能设备的安全性,同时最大限度地减少了能源使用。研究结果表明,KNN算法在检测Mirai僵尸网络攻击的准确率和能量效率方面优于SVM,在各种攻击类型中检测率均在99%以上。该研究强调了为物联网网络选择合适的安全技术以应对不断变化的威胁和支持6g无线通信系统的能源需求的重要性,为未来的研究提供了有价值的见解。
{"title":"Robust and energy-aware detection of Mirai botnet for future 6G-enabled IoT networks","authors":"Zainab Alwaisi, Tanesh Kumar, Simone Soderi","doi":"10.1016/j.jnca.2026.104438","DOIUrl":"https://doi.org/10.1016/j.jnca.2026.104438","url":null,"abstract":"Next-generation IoT wireless communication systems emphasise the importance and urgent need for energy-efficient security measures, thus requiring a balanced approach to address growing security vulnerabilities and fulfil energy demands in advanced wireless communication networks. However, the evolution of 6G networks and their integration with advanced technologies will revolutionise the IoT ecosystem while simultaneously introducing new security threats such as the Mirai malware, which targets IoT devices, infects multiple nodes, and depletes computational and energy resources. This study introduces a novel security algorithm designed to minimise energy consumption while effectively detecting botnet attacks at the smart device level. This research examines four distinct types of Mirai botnet attacks: scan, UDP, TCP, and ACK flooding.The experimental evaluation was conducted using real IoT device data collected from a Raspberry Pi setup combined with network traffic traces simulating the four Mirai attack scenarios to ensure realistic and reproducible results. Two ML algorithms, SVM and KNN, are employed to detect these botnet attacks, with each algorithm’s detection accuracy and energy efficiency thoroughly assessed. Results indicate that the proposed approach significantly enhances smart device security while minimising energy use. Findings show that the KNN algorithm outperforms SVM in terms of accuracy and energy efficiency for detecting Mirai botnet attacks, achieving detection rates above 99% across various attack types. This study highlights the importance of selecting suitable security techniques for IoT networks to address the evolving threats and energy demands of 6G-enabled wireless communication systems, providing valuable insights for future research.","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"1 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kangaroo: A Powerful Video-Language Model Supporting Long-context Video Input 袋鼠:支持长上下文视频输入的强大视频语言模型
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-02-09 DOI: 10.1007/s11263-025-02620-2
Jiajun Liu, Yibing Wang, Hanghang Ma, Xiaoping Wu, Xiaoqi Ma, Xiaoming Wei, Jianbin Jiao, Enhua Wu, Jie Hu
{"title":"Kangaroo: A Powerful Video-Language Model Supporting Long-context Video Input","authors":"Jiajun Liu, Yibing Wang, Hanghang Ma, Xiaoping Wu, Xiaoqi Ma, Xiaoming Wei, Jianbin Jiao, Enhua Wu, Jie Hu","doi":"10.1007/s11263-025-02620-2","DOIUrl":"https://doi.org/10.1007/s11263-025-02620-2","url":null,"abstract":"","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"93 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AquaticCLIP: A Vision-Language Foundation Model and Dataset for Underwater Scene Analysis aquaticlip:用于水下场景分析的视觉语言基础模型和数据集
IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-02-09 DOI: 10.1109/tnnls.2026.3657138
Basit Alawode, Iyyakutti Iyappan Ganapathi, Sajid Javed, Mohammed Bennamoun, Arif Mahmood
{"title":"AquaticCLIP: A Vision-Language Foundation Model and Dataset for Underwater Scene Analysis","authors":"Basit Alawode, Iyyakutti Iyappan Ganapathi, Sajid Javed, Mohammed Bennamoun, Arif Mahmood","doi":"10.1109/tnnls.2026.3657138","DOIUrl":"https://doi.org/10.1109/tnnls.2026.3657138","url":null,"abstract":"","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"161 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE What If IEEE What If
IF 11.2 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-02-09 DOI: 10.1109/mcom.2026.11373812
{"title":"IEEE What If","authors":"","doi":"10.1109/mcom.2026.11373812","DOIUrl":"https://doi.org/10.1109/mcom.2026.11373812","url":null,"abstract":"","PeriodicalId":55030,"journal":{"name":"IEEE Communications Magazine","volume":"284 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RACER: Fast and Accurate Time Series Clustering with Random Convolutional Kernels and Ensemble Methods RACER:基于随机卷积核和集成方法的快速准确时间序列聚类
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2026-02-09 DOI: 10.1109/jiot.2026.3662758
Haowen Zhang, Juan Li, Qing Yao
{"title":"RACER: Fast and Accurate Time Series Clustering with Random Convolutional Kernels and Ensemble Methods","authors":"Haowen Zhang, Juan Li, Qing Yao","doi":"10.1109/jiot.2026.3662758","DOIUrl":"https://doi.org/10.1109/jiot.2026.3662758","url":null,"abstract":"","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":"314 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Industrial Electronics Publication Information IEEE工业电子出版信息汇刊
IF 7.7 1区 工程技术 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2026-02-09 DOI: 10.1109/tie.2026.3654287
{"title":"IEEE Transactions on Industrial Electronics Publication Information","authors":"","doi":"10.1109/tie.2026.3654287","DOIUrl":"https://doi.org/10.1109/tie.2026.3654287","url":null,"abstract":"","PeriodicalId":13402,"journal":{"name":"IEEE Transactions on Industrial Electronics","volume":"18 1","pages":""},"PeriodicalIF":7.7,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Industrial Electronics Society Information IEEE工业电子学会信息
IF 7.2 1区 工程技术 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2026-02-09 DOI: 10.1109/TIE.2026.3654291
{"title":"IEEE Industrial Electronics Society Information","authors":"","doi":"10.1109/TIE.2026.3654291","DOIUrl":"https://doi.org/10.1109/TIE.2026.3654291","url":null,"abstract":"","PeriodicalId":13402,"journal":{"name":"IEEE Transactions on Industrial Electronics","volume":"73 2","pages":"C3-C3"},"PeriodicalIF":7.2,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11383830","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146139118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying Model Uncertainty with AutoML and Rashomon Partial Dependence Profiles: Enabling Trustworthy and Human-centered XAI 用AutoML和Rashomon部分依赖谱量化模型不确定性:实现可信赖和以人为中心的XAI
IF 5.9 3区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2026-02-09 DOI: 10.1007/s10796-026-10698-3
Mustafa Cavus, Jan N. van Rijn, Przemysław Biecek
Trustworthiness of AI systems is a core objective of Human-Centered Explainable AI, and relies, among other things, on explainability and understandability of the outcome. While automated machine learning tools automate model training, they often generate not only a single “best” model but also a set of near-equivalent alternatives, known as the Rashomon set. This set provides a unique opportunity for human-centered explainability: by exposing variability among similarly performing models, we can offer users richer and more informative explanations. In this paper, we introduce Rashomon partial dependence profiles , a model-agnostic technique that aggregates feature effect estimates across the Rashomon set. Unlike traditional explanations derived from a single model, Rashomon partial dependence profiles explicitly quantify uncertainty and visualize variability, further enabling user trust and understanding model behavior to make informed decisions. Additionally, under high-noise conditions, the Rashomon partial dependence profiles more accurately recover ground-truth feature relationships than a single-model partial dependence profile. Experiments on synthetic and real-world datasets demonstrate that Rashomon partial dependence profiles reduce average deviation from the ground truth by up to 38%, and their confidence intervals reliably capture true feature effects. These results highlight how leveraging the Rashomon set can enhance technical rigor while centering explanations on user trust and understanding aligned with Human-centered explainable AI principles.
人工智能系统的可信度是以人为中心的可解释人工智能的核心目标,它依赖于结果的可解释性和可理解性。虽然自动化机器学习工具可以自动进行模型训练,但它们通常不仅会生成一个“最佳”模型,还会生成一组近乎等效的替代模型,即罗生门集。这个集合为以人为中心的可解释性提供了一个独特的机会:通过暴露类似执行模型之间的可变性,我们可以为用户提供更丰富、更有信息的解释。在本文中,我们介绍了罗生门部分依赖概况,这是一种模型不可知论技术,可以聚合整个罗生门集的特征效应估计。与源自单一模型的传统解释不同,Rashomon部分依赖剖面明确量化了不确定性,并可视化了可变性,进一步增强了用户的信任和对模型行为的理解,从而做出明智的决策。此外,在高噪声条件下,Rashomon部分依赖剖面比单一模型部分依赖剖面更准确地恢复地真特征关系。在合成数据集和真实数据集上的实验表明,Rashomon部分依赖剖面将与地面真实的平均偏差降低了38%,其置信区间可靠地捕获了真实的特征效果。这些结果突出了如何利用罗生门集来提高技术严谨性,同时将解释集中在用户信任和理解上,与以人为中心的可解释人工智能原则保持一致。
{"title":"Quantifying Model Uncertainty with AutoML and Rashomon Partial Dependence Profiles: Enabling Trustworthy and Human-centered XAI","authors":"Mustafa Cavus, Jan N. van Rijn, Przemysław Biecek","doi":"10.1007/s10796-026-10698-3","DOIUrl":"https://doi.org/10.1007/s10796-026-10698-3","url":null,"abstract":"Trustworthiness of AI systems is a core objective of Human-Centered Explainable AI, and relies, among other things, on explainability and understandability of the outcome. While automated machine learning tools automate model training, they often generate not only a single “best” model but also a set of near-equivalent alternatives, known as the Rashomon set. This set provides a unique opportunity for human-centered explainability: by exposing variability among similarly performing models, we can offer users richer and more informative explanations. In this paper, we introduce <jats:italic>Rashomon partial dependence profiles</jats:italic> , a model-agnostic technique that aggregates feature effect estimates across the Rashomon set. Unlike traditional explanations derived from a single model, Rashomon partial dependence profiles explicitly quantify uncertainty and visualize variability, further enabling user trust and understanding model behavior to make informed decisions. Additionally, under high-noise conditions, the Rashomon partial dependence profiles more accurately recover ground-truth feature relationships than a single-model partial dependence profile. Experiments on synthetic and real-world datasets demonstrate that Rashomon partial dependence profiles reduce average deviation from the ground truth by up to 38%, and their confidence intervals reliably capture true feature effects. These results highlight how leveraging the Rashomon set can enhance technical rigor while centering explanations on user trust and understanding aligned with Human-centered explainable AI principles.","PeriodicalId":13610,"journal":{"name":"Information Systems Frontiers","volume":"45 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 J. Field Rob. J. Bionic Eng. ACTA INFORM Adv. Rob. AI MAG Ann. Math. Artif. Intell. Appl. Bionics Biomech. APPL INTELL APPL COMPUT ELECTROM APPL ARTIF INTELL Artif. Intell. ARTIF INTELL REV CHEMOMETR INTELL LAB China Commun. CMC-Comput. Mater. Continua Complex Intell. Syst. Comput. Sci. Eng. Commun. ACM COMPUTER Comput. Graphics Forum COMPUTING EMPIR SOFTW ENG Enterp. Inf. Syst. EPJ Data Sci. ETRI J EURASIP J WIREL COMM Evolving Systems FORM METHOD SYST DES Front. Neurorob. FRONT COMPUT SCI-CHI IEEE Trans. Commun. IEEE Trans. Comput. Social Syst. IEEE Trans. Dependable Secure Comput. IEEE Trans. Green Commun. Networking IEEE Trans. Cognit. Commun. Networking IEEE Access IEEE Trans. Comput. IEEE Antennas Propag. Mag. IEEE Micro IEEE Trans. Antennas Propag. IEEE Trans. Control Syst. Technol. IEEE Trans. Big Data IEEE Trans. Cybern. IEEE Internet Comput. IEEE Trans. Affective Comput. IEEE Trans. Emerging Top. Comput. Intell. IEEE SECUR PRIV IEEE Trans. Emerging Top. Comput. IEEE Trans. Aerosp. Electron. Syst. IEEE Trans. Broadcast. IEEE Intell. Syst. IEEE Commun. Lett. IEEE Trans. Autom. Control IEEE Trans. Cloud Comput. IEEE Trans. Evol. Comput. IEEE Trans. Consum. Electron. IEEE Trans. Fuzzy Syst. IEEE Trans. Haptic IEEE Trans. Image Process. IEEE Multimedia IEEE Rob. Autom. Lett. IEEE J. Sel. Areas Commun. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. IETE Tech. Rev. IEEE Trans. Serv. Comput. IEEE Trans. Parallel Distrib. Syst. IEEE Trans. Sustainable Comput. IEEE Trans. Multimedia IEEE Trans. Ind. Inf. IEEE Trans. Neural Networks Learn. Syst. IEEE Trans. Software Eng. IEEE-ACM T AUDIO SPE IEEE Wireless Commun. IEEE Wireless Commun. Lett. IET MICROW ANTENNA P IEEE Trans. Visual Comput. Graphics IEEE Trans. Ind. Electron. IET Optoelectron IEEE Trans. Veh. Technol. IEEE Trans. Netw. Serv. Manage. IEEE Trans. Pattern Anal. Mach. Intell. IEEE Trans. Wireless Commun. IEEE ACM T NETWORK IEEE Trans. Inf. Forensics Secur. IEEE Trans. Inf. Theory IEEE Trans. Knowl. Data Eng. INFORM SYST FRONT INFORMS J COMPUT INFOR Int. J. Comput. Vision Int. J. Approximate Reasoning Int. J. Control Int. J. Commun. Syst. Int. J. Imaging Syst. Technol. Int. J. Fuzzy Syst. Int. J. Intell. Syst. Int. J. Network Manage. Int. J. Parallel Program. Int. J. Social Rob. Int. J. Software Tools Technol. Trans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1