Pub Date : 2025-01-01Epub Date: 2024-10-15DOI: 10.1016/j.bios.2024.116841
Han Sol Kim, Kyungmin Ahn, Byeol Yi Han, Al-Monsur Jiaul Haque, Sujin Kim, Seungkeun Kim, Youngho Wee, Jungbae Kim
Enzyme-based electrochemical biosensors hold great promise for applications in health/disease monitoring, drug discovery, and environmental monitoring. However, inherently non-conductive nature of proteinaceous enzymes often hampers effective electron transfer at enzyme-electrode interface, limiting biosensor performance of enzyme bioelectrodes. To address this problem, we present an approach to synthesize polyaniline (PAN)-based conductive single enzyme nanocomposites of glucose oxidase (GOx) (denoted as PAN-GOx). To prevent multimerization of enzymes during nanocomposite synthesis and enable single enzyme wrapping, we activate GOx surface with phenylamine groups based on the programmed diffusion of reactants in the reaction solution. Subsequent in-situ polymerization enables the synthesis of nanoscale conductive PAN layer (∼2.7 nm thickness) grafted from individual GOx molecule. PAN-GOx retains 83% and 74% of its specific activity and catalytic efficiency, respectively, compared to free GOx, while demonstrating a ∼500% improved conductivity. Furthermore, PAN-GOx-based glucose biosensors show an approximately 16- and 3-fold higher sensitivity compared to biosensors prepared by using free GOx and a mixture of PAN and GOx, respectively. This study provides a facile method to fabricate conductive single enzyme nanocomposites with enhanced electron transfer, which can potentially be further modified and/or compounded with conductive materials for demonstrating high performance enzymatic bioelectrodes.
{"title":"Conductive single enzyme nanocomposites prepared by in-situ growth of nanoscale polyaniline for high performance enzymatic bioelectrode.","authors":"Han Sol Kim, Kyungmin Ahn, Byeol Yi Han, Al-Monsur Jiaul Haque, Sujin Kim, Seungkeun Kim, Youngho Wee, Jungbae Kim","doi":"10.1016/j.bios.2024.116841","DOIUrl":"10.1016/j.bios.2024.116841","url":null,"abstract":"<p><p>Enzyme-based electrochemical biosensors hold great promise for applications in health/disease monitoring, drug discovery, and environmental monitoring. However, inherently non-conductive nature of proteinaceous enzymes often hampers effective electron transfer at enzyme-electrode interface, limiting biosensor performance of enzyme bioelectrodes. To address this problem, we present an approach to synthesize polyaniline (PAN)-based conductive single enzyme nanocomposites of glucose oxidase (GOx) (denoted as PAN-GOx). To prevent multimerization of enzymes during nanocomposite synthesis and enable single enzyme wrapping, we activate GOx surface with phenylamine groups based on the programmed diffusion of reactants in the reaction solution. Subsequent in-situ polymerization enables the synthesis of nanoscale conductive PAN layer (∼2.7 nm thickness) grafted from individual GOx molecule. PAN-GOx retains 83% and 74% of its specific activity and catalytic efficiency, respectively, compared to free GOx, while demonstrating a ∼500% improved conductivity. Furthermore, PAN-GOx-based glucose biosensors show an approximately 16- and 3-fold higher sensitivity compared to biosensors prepared by using free GOx and a mixture of PAN and GOx, respectively. This study provides a facile method to fabricate conductive single enzyme nanocomposites with enhanced electron transfer, which can potentially be further modified and/or compounded with conductive materials for demonstrating high performance enzymatic bioelectrodes.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":" ","pages":"116841"},"PeriodicalIF":10.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-16DOI: 10.1016/j.bios.2024.116859
Injoo Hwang, Yo Han Song, Sanghwa Lee
The CRISPR-Cas12a system has emerged as a promising tool for molecular diagnostics due to its indiscriminate trans-ssDNase activity. However, the sensitivity of Cas12a-based diagnostics remains insufficient for clinical use without a pre-amplification step such as loop-mediated isothermal amplification, and therefore the trans-cleavage activity of Cas12a needs to be enhanced. Here, we present a novel strategy to enhance the trans-cleavage activity of Cas12a by reducing the steric hindrance from cis-cleavage products. We have designed Cas12a variants with alanine mutations in the target strand loading (TSL) domain, resulting in reduced affinity for target strand (TS) overhangs to the catalytic site and significantly increased trans-cleavage efficiency by up to 5.8-fold. In addition, we used a novel salt dilution method to exploit the enhanced trans-cleavage activity of Cas12a under low ionic strength conditions (7-fold), significantly improving the sensitivity of our Cas12a-based detection system. To demonstrate the clinical potential of our Cas12a-based detection system, we validated its ability to detect small amounts of hepatitis B virus (HBV) DNA model using the combination of the KE1096AA Cas12a mutant and the salt dilution method, which enables the detection of DNA at atto-molar concentrations. Our strategy to enhance the trans-cleavage activity of Cas12a paves the way for the development of more sensitive and efficient Cas12a-based diagnostics.
{"title":"Enhanced trans-cleavage activity using CRISPR-Cas12a variant designed to reduce steric inhibition by cis-cleavage products.","authors":"Injoo Hwang, Yo Han Song, Sanghwa Lee","doi":"10.1016/j.bios.2024.116859","DOIUrl":"10.1016/j.bios.2024.116859","url":null,"abstract":"<p><p>The CRISPR-Cas12a system has emerged as a promising tool for molecular diagnostics due to its indiscriminate trans-ssDNase activity. However, the sensitivity of Cas12a-based diagnostics remains insufficient for clinical use without a pre-amplification step such as loop-mediated isothermal amplification, and therefore the trans-cleavage activity of Cas12a needs to be enhanced. Here, we present a novel strategy to enhance the trans-cleavage activity of Cas12a by reducing the steric hindrance from cis-cleavage products. We have designed Cas12a variants with alanine mutations in the target strand loading (TSL) domain, resulting in reduced affinity for target strand (TS) overhangs to the catalytic site and significantly increased trans-cleavage efficiency by up to 5.8-fold. In addition, we used a novel salt dilution method to exploit the enhanced trans-cleavage activity of Cas12a under low ionic strength conditions (7-fold), significantly improving the sensitivity of our Cas12a-based detection system. To demonstrate the clinical potential of our Cas12a-based detection system, we validated its ability to detect small amounts of hepatitis B virus (HBV) DNA model using the combination of the KE1096AA Cas12a mutant and the salt dilution method, which enables the detection of DNA at atto-molar concentrations. Our strategy to enhance the trans-cleavage activity of Cas12a paves the way for the development of more sensitive and efficient Cas12a-based diagnostics.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"267 ","pages":"116859"},"PeriodicalIF":10.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-18DOI: 10.1016/j.bios.2024.116863
Minsu Park, Chan-Hyeong Lee, Hyowoong Noh, Geeyoon Kang, Junyeong Lee, Ju-Hyun Bae, Hyeri Moon, Jonghoo Park, Seongho Kong, Moon-Chang Baek, Hongsik Park
Cancer-derived small extracellular vesicles (sEVs) in body fluids hold promise as biomarkers for cancer diagnosis. For sEV-based liquid biopsy, isolation of sEVs with a high-purity and cancer-sEV detection with an extremely high sensitivity are essential because body fluids include much higher density of normal-cell-derived sEVs and other biomolecules and bioparticles. Here, we propose an isolation-analysis-integrated cancer-diagnosis platform based on dielectrophoresis(DEP)-ELISA technique which enables a three orders of magnitude higher sensitivity over conventional ELISA method and direct cancer diagnosis from blood plasma with high accuracy. The limit of detection (LOD) for sEVs in human plasma was as low as 104 sEVs/mL without a time-consuming and low-yield sEV isolation and purification process. The capability of this platform was validated by monitoring mice with cancer cell inoculation and assessing the effect of cancer-sEV-inhibiting drug. Using the developed sEV-based liquid biopsy, we diagnosed clinical samples from healthy donors (N = 39) and cancer patients (N = 90). The diagnostic accuracy was 94.2%, 98.6%, and 91.3% for breast, colon, and lung cancers, respectively. This integrated sEV isolation and analysis platform could be applied for high-sensitivity biomarker profiling and sEV-based liquid biopsy.
体液中的癌症衍生小细胞外囊泡(sEVs)有望成为癌症诊断的生物标记物。对于基于 sEV 的液体活检来说,高纯度的 sEV 分离和极高灵敏度的癌症-sEV 检测至关重要,因为体液中包含的正常细胞衍生的 sEV 以及其他生物大分子和生物颗粒的密度要高得多。在此,我们提出了一种基于介质电泳(DEP)-ELISA 技术的分离-分析-癌症诊断一体化平台,其灵敏度比传统的 ELISA 方法高出三个数量级,可直接从血浆中进行高精度的癌症诊断。无需耗时、低产的 sEV 分离和纯化过程,人体血浆中 sEV 的检测限(LOD)低至 104 sEVs/mL。通过监测小鼠的癌细胞接种情况和评估抑制癌症 sEV 药物的效果,验证了该平台的能力。利用开发的基于 sEV 的液体活检技术,我们对来自健康供体(39 人)和癌症患者(90 人)的临床样本进行了诊断。对乳腺癌、结肠癌和肺癌的诊断准确率分别为 94.2%、98.6% 和 91.3%。这种集成的 sEV 分离和分析平台可用于高灵敏度生物标志物分析和基于 sEV 的液体活检。
{"title":"High-precision extracellular-vesicle isolation-analysis integrated platform for rapid cancer diagnosis directly from blood plasma.","authors":"Minsu Park, Chan-Hyeong Lee, Hyowoong Noh, Geeyoon Kang, Junyeong Lee, Ju-Hyun Bae, Hyeri Moon, Jonghoo Park, Seongho Kong, Moon-Chang Baek, Hongsik Park","doi":"10.1016/j.bios.2024.116863","DOIUrl":"10.1016/j.bios.2024.116863","url":null,"abstract":"<p><p>Cancer-derived small extracellular vesicles (sEVs) in body fluids hold promise as biomarkers for cancer diagnosis. For sEV-based liquid biopsy, isolation of sEVs with a high-purity and cancer-sEV detection with an extremely high sensitivity are essential because body fluids include much higher density of normal-cell-derived sEVs and other biomolecules and bioparticles. Here, we propose an isolation-analysis-integrated cancer-diagnosis platform based on dielectrophoresis(DEP)-ELISA technique which enables a three orders of magnitude higher sensitivity over conventional ELISA method and direct cancer diagnosis from blood plasma with high accuracy. The limit of detection (LOD) for sEVs in human plasma was as low as 10<sup>4</sup> sEVs/mL without a time-consuming and low-yield sEV isolation and purification process. The capability of this platform was validated by monitoring mice with cancer cell inoculation and assessing the effect of cancer-sEV-inhibiting drug. Using the developed sEV-based liquid biopsy, we diagnosed clinical samples from healthy donors (N = 39) and cancer patients (N = 90). The diagnostic accuracy was 94.2%, 98.6%, and 91.3% for breast, colon, and lung cancers, respectively. This integrated sEV isolation and analysis platform could be applied for high-sensitivity biomarker profiling and sEV-based liquid biopsy.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"267 ","pages":"116863"},"PeriodicalIF":10.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-18DOI: 10.1016/j.bios.2024.116862
Nan Hai, Han Yi, Yining Bai, Lingyun Zhang, Haonan Chi, Jiajing Yan, Longshan Zhao, Shuang Cai
Here, a photoelectrochemical (PEC) immunosensor based on the FJU-200@CdSe heterostructure was developed for epidermal growth factor receptor (EGFR) detection. This is the first application of FJU-200 in PEC. After modification using CdSe quantum dots (QDs), FJU-200 and CdSe QDs formed an S-scheme heterostructure due to the interleaved energy band structure and the difference in Fermi energy (Ef) levels, which generated an efficient and stable PEC signal. When EGFR bound specifically to the antibody, a large spatial site resistance was generated, which hindered the electron transfer at the interface and the PEC signal was quenched. The proposed PEC sensing platform exhibited excellent detection performance for EGFR, with a good linear relationship with the photocurrent change value (ΔI) in the detection range of 10 fg/mL-100 ng/mL, and the detection limit was as low as 1.08 fg/mL. This work illustrates the potential electron transfer pathway between FJU-200 and CdSe QDs and creatively applies to the construction of PEC immunosensors, providing a new option for the detection of EGFR as well as other substances to be tested.
{"title":"HOF-derived Step-Scheme FJU-200@CdSe heterojunction: A photoelectrochemical sensing platform for sensitive detection of EGFR.","authors":"Nan Hai, Han Yi, Yining Bai, Lingyun Zhang, Haonan Chi, Jiajing Yan, Longshan Zhao, Shuang Cai","doi":"10.1016/j.bios.2024.116862","DOIUrl":"10.1016/j.bios.2024.116862","url":null,"abstract":"<p><p>Here, a photoelectrochemical (PEC) immunosensor based on the FJU-200@CdSe heterostructure was developed for epidermal growth factor receptor (EGFR) detection. This is the first application of FJU-200 in PEC. After modification using CdSe quantum dots (QDs), FJU-200 and CdSe QDs formed an S-scheme heterostructure due to the interleaved energy band structure and the difference in Fermi energy (Ef) levels, which generated an efficient and stable PEC signal. When EGFR bound specifically to the antibody, a large spatial site resistance was generated, which hindered the electron transfer at the interface and the PEC signal was quenched. The proposed PEC sensing platform exhibited excellent detection performance for EGFR, with a good linear relationship with the photocurrent change value (ΔI) in the detection range of 10 fg/mL-100 ng/mL, and the detection limit was as low as 1.08 fg/mL. This work illustrates the potential electron transfer pathway between FJU-200 and CdSe QDs and creatively applies to the construction of PEC immunosensors, providing a new option for the detection of EGFR as well as other substances to be tested.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"267 ","pages":"116862"},"PeriodicalIF":10.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-22DOI: 10.1016/j.bios.2024.116871
Jae Hwan Shin, Navnath S Padalkar, Hyo Jeong Yang, Jayshri A Shingade, Jong Pil Park
The accurate assessment of kidney dysfunction is crucial in clinical practice, necessitating the exploration of reliable biomarkers. However, current methods for measuring SDMA often fall short in terms of sensitivity and specificity. In this study, we employed phage display technology to identify high affinity peptides that specifically bind to SDMA. The selected peptide was subsequently integrated into a novel Ni-Cr layered double hydroxide-graphene oxide (NCL-GO) nanoarchitecture. We characterized the electrochemical properties of the biosensor using cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry, systematically evaluating critical parameters such as limit of detection (LOD), reproducibility, and performance in complex biological matrices including urine. The NCL-GO architecture not only enhances the surface area available for electrochemical reactions but also facilitates rapid electron transfer kinetics which are essential for the accurate quantification of small molecule, SDMA. The electrochemical biosensor exhibited an outstanding limit of detection of 0.1 ng/mL in the 0-1 ng/mL range and 7.2 ng/mL in the 1-100 ng/mL range, demonstrating exceptional sensitivity and specificity for SDMA. Furthermore, the biosensor displayed excellent reproducibility with a relative standard deviation of 4.9%. Notably, it maintained robust chirality sensing capabilities, even in complex biological fluids. These findings suggest that this biosensor could play a pivotal role in early disease diagnosis and therapeutic monitoring, ultimately improving clinical outcomes and advancing biomedical research.
{"title":"Affinity peptide-based electrochemical biosensor with 2D-2D nanoarchitecture of nickel-chromium-layered double hydroxide and graphene oxide nanosheets for chirality detection of symmetric dimethylarginine.","authors":"Jae Hwan Shin, Navnath S Padalkar, Hyo Jeong Yang, Jayshri A Shingade, Jong Pil Park","doi":"10.1016/j.bios.2024.116871","DOIUrl":"10.1016/j.bios.2024.116871","url":null,"abstract":"<p><p>The accurate assessment of kidney dysfunction is crucial in clinical practice, necessitating the exploration of reliable biomarkers. However, current methods for measuring SDMA often fall short in terms of sensitivity and specificity. In this study, we employed phage display technology to identify high affinity peptides that specifically bind to SDMA. The selected peptide was subsequently integrated into a novel Ni-Cr layered double hydroxide-graphene oxide (NCL-GO) nanoarchitecture. We characterized the electrochemical properties of the biosensor using cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry, systematically evaluating critical parameters such as limit of detection (LOD), reproducibility, and performance in complex biological matrices including urine. The NCL-GO architecture not only enhances the surface area available for electrochemical reactions but also facilitates rapid electron transfer kinetics which are essential for the accurate quantification of small molecule, SDMA. The electrochemical biosensor exhibited an outstanding limit of detection of 0.1 ng/mL in the 0-1 ng/mL range and 7.2 ng/mL in the 1-100 ng/mL range, demonstrating exceptional sensitivity and specificity for SDMA. Furthermore, the biosensor displayed excellent reproducibility with a relative standard deviation of 4.9%. Notably, it maintained robust chirality sensing capabilities, even in complex biological fluids. These findings suggest that this biosensor could play a pivotal role in early disease diagnosis and therapeutic monitoring, ultimately improving clinical outcomes and advancing biomedical research.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"267 ","pages":"116871"},"PeriodicalIF":10.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-21DOI: 10.1016/j.bios.2024.116869
Qianqian Li, Shengfan Chen, Huawei Wang, Qiaoying Chang, Yi Li, Jianxun Li
The contamination of mycotoxins is a serious problem around the world. It has detrimental effects on human beings and leads to tremendous economic loss. It is essential to develop a rapid and non-destructive method for contamination recognition particularly for early alarm. In this study, the whole-cell biosensor array was constructed and employed for rapid recognition of wheat contamination by combining with machine learning algorithms. Seven key VOCs were explored through univariate coupling to multivariate analysis of orthogonal partial least squares-discrimination analysis (OPLS-DA) models. The promoters of dnaK, katG, oxyR, soxS obtained from the stress-responsive of key VOCs were fused to the bacterial operon and fabricated on the whole-cell biosensor. The constructed whole-cell biosensor array was consisted with four kinds of sensors and 18 sensor unit. The bioluminescent intensity combined with linear machine learning algorithm of partial least squares discriminant analysis (PLS-DA) and non-linear algorithms of back propagating artificial neural network (BP-ANN) and least square support vector machine (LS-SVM) were employed to establish discrimination models for mold contamination especially for early warning. The Monte-Carlo strategy was performed to generate thirty subsets for modeling to give more reliable results. As a result, the whole-cell biosensor combined with non-linear algorithm of LS-SVM was practicable for detecting mold identification for wheat early-warning with the accuracy of 97.24%. Additionally, this study provides practical and effective methods not only for wheat quality guarantee and supervision but also for other foodstuffs.
{"title":"Decoding wheat contamination through self-assembled whole-cell biosensor combined with linear and non-linear machine learning algorithms.","authors":"Qianqian Li, Shengfan Chen, Huawei Wang, Qiaoying Chang, Yi Li, Jianxun Li","doi":"10.1016/j.bios.2024.116869","DOIUrl":"10.1016/j.bios.2024.116869","url":null,"abstract":"<p><p>The contamination of mycotoxins is a serious problem around the world. It has detrimental effects on human beings and leads to tremendous economic loss. It is essential to develop a rapid and non-destructive method for contamination recognition particularly for early alarm. In this study, the whole-cell biosensor array was constructed and employed for rapid recognition of wheat contamination by combining with machine learning algorithms. Seven key VOCs were explored through univariate coupling to multivariate analysis of orthogonal partial least squares-discrimination analysis (OPLS-DA) models. The promoters of dnaK, katG, oxyR, soxS obtained from the stress-responsive of key VOCs were fused to the bacterial operon and fabricated on the whole-cell biosensor. The constructed whole-cell biosensor array was consisted with four kinds of sensors and 18 sensor unit. The bioluminescent intensity combined with linear machine learning algorithm of partial least squares discriminant analysis (PLS-DA) and non-linear algorithms of back propagating artificial neural network (BP-ANN) and least square support vector machine (LS-SVM) were employed to establish discrimination models for mold contamination especially for early warning. The Monte-Carlo strategy was performed to generate thirty subsets for modeling to give more reliable results. As a result, the whole-cell biosensor combined with non-linear algorithm of LS-SVM was practicable for detecting mold identification for wheat early-warning with the accuracy of 97.24%. Additionally, this study provides practical and effective methods not only for wheat quality guarantee and supervision but also for other foodstuffs.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"267 ","pages":"116869"},"PeriodicalIF":10.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-12DOI: 10.1016/j.bios.2024.116852
Wei Ling, Xue Shang, Junchen Liu, Tao Tang
Continuous monitoring of sweat nutrients offers valuable insights into metabolic cycling and health levels. However, existing methods often lack adaptability and real-time capabilities. Here, we propose a skin-mountable flexible biosensor integrated with metal-organic framework (MOF)-derived composites for real-time monitoring of sweat ascorbic acid (AA) levels. The biosensor features a miniaturized, highly integrated system capable of an imperceptible, stretchable skin patch with dimensions of 16.9 × 9.9 × 0.1 mm3, ensuring conformal integration with curvilinear skin contours. The introduction of a copper-based MOF anchored with poly(3,4-ethylenedioxythiophene) (Cu-MOF/PEDOT) significantly enhances sensing performance toward AA, achieving a detection limit of 0.76 μM and a sensitivity of 725.7 μA/(mM·cm2). Moreover, a miniaturized flexible circuit enables wireless communication, resulting in a lightweight, wearable platform weighing only 1.3 g. Structural and electrochemical analyses confirm the favorable sensitivity, reversibility, and stability of the biosensor, while in-vivo validation in human subjects further reveals the capability to track sweat AA variations during nutrient intake and sustained exercise, showcasing its potential in metabolic cycle assessment and health management. The biosensor presents a promising avenue for scalable health monitoring using adaptable and user-friendly technologies.
对汗液营养成分的连续监测为了解代谢循环和健康水平提供了宝贵的信息。然而,现有方法往往缺乏适应性和实时性。在这里,我们提出了一种与金属有机框架(MOF)衍生复合材料集成的可安装在皮肤上的柔性生物传感器,用于实时监测汗液中的抗坏血酸(AA)水平。该生物传感器是一个微型化、高度集成的系统,能够形成一个尺寸为 16.9 × 9.9 × 0.1 mm3 的不易察觉、可拉伸的皮肤贴片,确保与曲线皮肤轮廓的适形整合。铜基 MOF 与聚(3,4-亚乙二氧基噻吩)(Cu-MOF/PEDOT)的引入大大提高了对 AA 的传感性能,实现了 0.76 μM 的检测限和 725.7 μA/(mM-cm2) 的灵敏度。结构和电化学分析证实了该生物传感器良好的灵敏度、可逆性和稳定性,而人体体内验证则进一步揭示了该传感器在营养摄入和持续运动过程中跟踪汗液 AA 变化的能力,展示了其在代谢周期评估和健康管理方面的潜力。该生物传感器为利用适应性强、用户友好的技术进行可扩展的健康监测提供了一条大有可为的途径。
{"title":"A skin-mountable flexible biosensor based on Cu-MOF/PEDOT composites for sweat ascorbic acid monitoring.","authors":"Wei Ling, Xue Shang, Junchen Liu, Tao Tang","doi":"10.1016/j.bios.2024.116852","DOIUrl":"10.1016/j.bios.2024.116852","url":null,"abstract":"<p><p>Continuous monitoring of sweat nutrients offers valuable insights into metabolic cycling and health levels. However, existing methods often lack adaptability and real-time capabilities. Here, we propose a skin-mountable flexible biosensor integrated with metal-organic framework (MOF)-derived composites for real-time monitoring of sweat ascorbic acid (AA) levels. The biosensor features a miniaturized, highly integrated system capable of an imperceptible, stretchable skin patch with dimensions of 16.9 × 9.9 × 0.1 mm<sup>3</sup>, ensuring conformal integration with curvilinear skin contours. The introduction of a copper-based MOF anchored with poly(3,4-ethylenedioxythiophene) (Cu-MOF/PEDOT) significantly enhances sensing performance toward AA, achieving a detection limit of 0.76 μM and a sensitivity of 725.7 μA/(mM·cm<sup>2</sup>). Moreover, a miniaturized flexible circuit enables wireless communication, resulting in a lightweight, wearable platform weighing only 1.3 g. Structural and electrochemical analyses confirm the favorable sensitivity, reversibility, and stability of the biosensor, while in-vivo validation in human subjects further reveals the capability to track sweat AA variations during nutrient intake and sustained exercise, showcasing its potential in metabolic cycle assessment and health management. The biosensor presents a promising avenue for scalable health monitoring using adaptable and user-friendly technologies.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"267 ","pages":"116852"},"PeriodicalIF":10.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-25DOI: 10.1016/j.bios.2024.116861
Bailey C Buchanan, Reid S Loeffler, Rongguang Liang, Jeong-Yeol Yoon
This work demonstrates a novel, non-fluorescence approach to the length identification of polymerase chain reaction (PCR) and recombinase polymerase amplification (RPA) products, utilizing capillary flow velocities on paper microfluidic chips. It required only a blank paper chip, aminated microspheres, and a smartphone, with a rapid assay time and under ambient lighting. A smartphone evaluated the initial capillary flow velocities on the paper chips for the PCR and RPA products from various bacterial samples, where the pre-loaded aminated microspheres differentiated their flow velocities. Flow velocities were analyzed at different time frames and compared with the instantaneous flow velocities and interfacial tension (γLV) data. Subsequent error analysis justified the use of the initial time frames. A robust linear relationship could be established between the initial flow velocities against the square root of the product lengths, with R2 values of 0.981 for PCR and 0.993 for RPA. The assay seemed not to have a significant dependency on the cycle numbers and initial target concentrations. This novel method can be potentially used with various paper microfluidic methods of nucleic acid amplification tests towards rapid and handheld assays.
{"title":"Capillary flow velocity-based length identification of PCR and RPA products on paper microfluidic chips.","authors":"Bailey C Buchanan, Reid S Loeffler, Rongguang Liang, Jeong-Yeol Yoon","doi":"10.1016/j.bios.2024.116861","DOIUrl":"10.1016/j.bios.2024.116861","url":null,"abstract":"<p><p>This work demonstrates a novel, non-fluorescence approach to the length identification of polymerase chain reaction (PCR) and recombinase polymerase amplification (RPA) products, utilizing capillary flow velocities on paper microfluidic chips. It required only a blank paper chip, aminated microspheres, and a smartphone, with a rapid assay time and under ambient lighting. A smartphone evaluated the initial capillary flow velocities on the paper chips for the PCR and RPA products from various bacterial samples, where the pre-loaded aminated microspheres differentiated their flow velocities. Flow velocities were analyzed at different time frames and compared with the instantaneous flow velocities and interfacial tension (γ<sub>LV</sub>) data. Subsequent error analysis justified the use of the initial time frames. A robust linear relationship could be established between the initial flow velocities against the square root of the product lengths, with R<sup>2</sup> values of 0.981 for PCR and 0.993 for RPA. The assay seemed not to have a significant dependency on the cycle numbers and initial target concentrations. This novel method can be potentially used with various paper microfluidic methods of nucleic acid amplification tests towards rapid and handheld assays.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":" ","pages":"116861"},"PeriodicalIF":10.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-22DOI: 10.1016/j.bios.2024.116866
Yumeng Cao, Haosi Lin, Xiao Lu, Xiaolong Wu, Yuxuan Zhu, Zibin Zhao, Yanan Li, Samantha Borje, Grace C Y Lui, Shui Shan Lee, Hnin Yin Yin Nyein, I-Ming Hsing
CoRPLA (CRISPR-regulated One-pot Recombinase Polymerase Loop-mediated Amplification) is an amplicon-depleted skin-temperature operated iNAAT designed for at-home testing. It uses specially designed loop primers to enhance isothermal amplification, triggering Cas12 for in-situ amplicon depletion and signal amplification. This method addresses issues like amplicon-derived aerosol contamination and complex assay formats, enabling quantitative detection with sub-attomolar sensitivity (0.5 cps/μL). CoRPLA employs a DNA hydrogel wearable tape for real-time, colorimetric readout, allowing visual differentiation of pathogen loads. It was validated with clinical samples for SARS-CoV-2, RSV, influenza A, and HPV, successfully identifying multi-level viral loads of the positive cases with results consistent with qPCR. Offering high sensitivity while eliminating false positives from aerosol contamination, CoRPLA bridges the molecular assay from benchtop to home for daily viral infections monitoring.
{"title":"Benchtop to at-home test: Amplicon-depleted CRISPR-regulated loop mediated amplification at skin-temperature for viral load monitoring.","authors":"Yumeng Cao, Haosi Lin, Xiao Lu, Xiaolong Wu, Yuxuan Zhu, Zibin Zhao, Yanan Li, Samantha Borje, Grace C Y Lui, Shui Shan Lee, Hnin Yin Yin Nyein, I-Ming Hsing","doi":"10.1016/j.bios.2024.116866","DOIUrl":"10.1016/j.bios.2024.116866","url":null,"abstract":"<p><p>CoRPLA (CRISPR-regulated One-pot Recombinase Polymerase Loop-mediated Amplification) is an amplicon-depleted skin-temperature operated iNAAT designed for at-home testing. It uses specially designed loop primers to enhance isothermal amplification, triggering Cas12 for in-situ amplicon depletion and signal amplification. This method addresses issues like amplicon-derived aerosol contamination and complex assay formats, enabling quantitative detection with sub-attomolar sensitivity (0.5 cps/μL). CoRPLA employs a DNA hydrogel wearable tape for real-time, colorimetric readout, allowing visual differentiation of pathogen loads. It was validated with clinical samples for SARS-CoV-2, RSV, influenza A, and HPV, successfully identifying multi-level viral loads of the positive cases with results consistent with qPCR. Offering high sensitivity while eliminating false positives from aerosol contamination, CoRPLA bridges the molecular assay from benchtop to home for daily viral infections monitoring.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"267 ","pages":"116866"},"PeriodicalIF":10.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-23DOI: 10.1016/j.bios.2024.116874
Yujie Song, Zeping Wang, Qingnian Wu, Jing Su, Jie Liao, Xiaoqiu Zhang, Jun Yan, Ke-Jing Huang, Xuecai Tan, Yu Ya
Sucrose, a common sugar primarily derived from sugarcane, is a crucial national strategic resource. However, its yield is significantly affected by various serious diseases, with pokkah boeng disease being one of the most damaging. Therefore, developing a sensitive method for the accurate detection of the pokkah boeng disease pathogen is crucial for ensuring the safety of sugar. This work presents a portable dual-modal detection device, assisted by a smartphone, which is based on MoS2@GDY, Mn3O4@Au nanomenzyme, cross-N DNA framework and Exo III exonuclease-assisted CHA signal amplification technology. The cross-N DNA framework provides many binding sites and is not restricted by AuNPs scattering positions, enhancing the signal output strength of the sensor. Additionally, the detection system incorporates a high-power-density capacitor to further amplify the electrochemical detection signal, increasing sensitivity by 9.1 times. Moreover, the use of electrochemical and colorimetric dual-mode detection effectively avoids mutual interference, reducing the likelihood of false positives from a single signal. Under optimized conditions, the proposed method has a linear range of 0.0001-10,000 pM, and with a detection limit of 6.1 aM (S/N=3). This high-sensitivity, high-reliability portable sensing method shows significant potential for the early detection and real-time on-site monitoring of the pokkah boeng disease pathogen.
蔗糖是一种主要从甘蔗中提取的普通糖类,是一种重要的国家战略资源。然而,各种严重病害会严重影响其产量,其中危害最大的病害之一就是甘蔗褐斑病(pokkah boeng disease)。因此,开发一种灵敏的方法来准确检测 pokkah boeng 病病原体对于确保蔗糖安全至关重要。本研究提出了一种便携式双模式检测装置,该装置由智能手机辅助,基于 MoS2@GDY、Mn3O4@Au 纳米酶、cross-N DNA 框架和 Exo III 外切酶辅助 CHA 信号放大技术。交叉-N DNA 框架提供了许多结合位点,并且不受 AuNPs 散射位置的限制,从而增强了传感器的信号输出强度。此外,该检测系统还采用了高功率密度电容器,进一步放大了电化学检测信号,使灵敏度提高了 9.1 倍。此外,电化学和比色双模式检测的使用有效地避免了相互干扰,降低了单一信号产生误报的可能性。在优化条件下,该方法的线性范围为 0.0001-10,000 pM,检测限为 6.1 aM(S/N=3)。这种高灵敏度、高可靠性的便携式传感方法在早期检测和实时现场监测博卡翁病病原体方面显示出巨大的潜力。
{"title":"A dual-mode strategy for early detection of sugarcane pokkah boeng disease pathogen: A portable sensing device based on Cross-N DNA framework and MoS<sub>2</sub>@GDY.","authors":"Yujie Song, Zeping Wang, Qingnian Wu, Jing Su, Jie Liao, Xiaoqiu Zhang, Jun Yan, Ke-Jing Huang, Xuecai Tan, Yu Ya","doi":"10.1016/j.bios.2024.116874","DOIUrl":"10.1016/j.bios.2024.116874","url":null,"abstract":"<p><p>Sucrose, a common sugar primarily derived from sugarcane, is a crucial national strategic resource. However, its yield is significantly affected by various serious diseases, with pokkah boeng disease being one of the most damaging. Therefore, developing a sensitive method for the accurate detection of the pokkah boeng disease pathogen is crucial for ensuring the safety of sugar. This work presents a portable dual-modal detection device, assisted by a smartphone, which is based on MoS<sub>2</sub>@GDY, Mn<sub>3</sub>O<sub>4</sub>@Au nanomenzyme, cross-N DNA framework and Exo III exonuclease-assisted CHA signal amplification technology. The cross-N DNA framework provides many binding sites and is not restricted by AuNPs scattering positions, enhancing the signal output strength of the sensor. Additionally, the detection system incorporates a high-power-density capacitor to further amplify the electrochemical detection signal, increasing sensitivity by 9.1 times. Moreover, the use of electrochemical and colorimetric dual-mode detection effectively avoids mutual interference, reducing the likelihood of false positives from a single signal. Under optimized conditions, the proposed method has a linear range of 0.0001-10,000 pM, and with a detection limit of 6.1 aM (S/N=3). This high-sensitivity, high-reliability portable sensing method shows significant potential for the early detection and real-time on-site monitoring of the pokkah boeng disease pathogen.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"267 ","pages":"116874"},"PeriodicalIF":10.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}