Owing to the promising optoelectronic and thermoelectric properties of two-dimensional (2D) group III–VI materials (MXs), their nanoribbons (NRs) have attracted notable attention as an emerging class of quasi-one-dimensional (quasi-1D) nanostructures. Due to the fact that the most stable 2D monolayer polymorph of MXs is the 1H phase, to date, existing studies in the literature have predominantly focused on the NRs formed from 1H phase MXs. Nevertheless, NRs of the 1T phase have received little to no attention. Employing ab initio simulations based on density functional theory, we systematically compared the thermodynamic stability of hydrogen-passivated and unpassivated 1T and 1H ZNRs of GaS, GaSe, and InSe. Our results reveal that nonpolar 1T phase MX ZNRs are thermodynamically more favorable than polar 1H MX ZNRs at widths up to 34 nm, a range that is realizable through contemporary experimental fabrication techniques. Furthermore, unlike metallic 1H ZNRs, 1T ZNRs remain semiconductors and retain Mexican-hat-shaped top valence bands. Complementarily, hydrogenation energies of 1T InSe ZNRs are positive, and due to the edge-localized states, the 1T unpassivated ZNRs possess nearly flat top valence bands. Our findings serve as a compass for subsequent synthesis pathways of group III–VI NRs.
{"title":"Thermodynamic Favorability of the 1T Phase over the 1H Phase in Group III Metal Monochalcogenide Zigzag Nanoribbons","authors":"Emin Aliyev, Arash Mobaraki, Hâldun Sevinçli, Seymur Jahangirov","doi":"10.1021/acs.jpcc.5c00765","DOIUrl":"https://doi.org/10.1021/acs.jpcc.5c00765","url":null,"abstract":"Owing to the promising optoelectronic and thermoelectric properties of two-dimensional (2D) group III–VI materials (MXs), their nanoribbons (NRs) have attracted notable attention as an emerging class of quasi-one-dimensional (quasi-1D) nanostructures. Due to the fact that the most stable 2D monolayer polymorph of MXs is the 1H phase, to date, existing studies in the literature have predominantly focused on the NRs formed from 1H phase MXs. Nevertheless, NRs of the 1T phase have received little to no attention. Employing ab initio simulations based on density functional theory, we systematically compared the thermodynamic stability of hydrogen-passivated and unpassivated 1T and 1H ZNRs of GaS, GaSe, and InSe. Our results reveal that nonpolar 1T phase MX ZNRs are thermodynamically more favorable than polar 1H MX ZNRs at widths up to 34 nm, a range that is realizable through contemporary experimental fabrication techniques. Furthermore, unlike metallic 1H ZNRs, 1T ZNRs remain semiconductors and retain Mexican-hat-shaped top valence bands. Complementarily, hydrogenation energies of 1T InSe ZNRs are positive, and due to the edge-localized states, the 1T unpassivated ZNRs possess nearly flat top valence bands. Our findings serve as a compass for subsequent synthesis pathways of group III–VI NRs.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"12 1","pages":""},"PeriodicalIF":4.126,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143858236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-21DOI: 10.1016/j.rser.2025.115744
Sachini Supunsala Senadheera , Piumi Amasha Withana , Siming You , Daniel C.W. Tsang , Sung Yeon Hwang , Yong Sik Ok
Biochar has traditionally been used as a soil amendment as it enhances carbon sequestration and soil fertility. In addition to agriculture, biochar has recently been used in various industrial sectors, including textiles, construction, waste management, renewable energy generation, and for climate change mitigation. However, biochar performance depends on the feedstock quality and properties. This review highlights the key breakthroughs in the potential for integration of biochar across diverse industries and the associated emerging business opportunities within the global biochar market. By incorporating techno-economic analyses, we evaluate the feasibility of biochar production technologies by evaluating their associated costs, benefits, risks, and uncertainties. This review focuses on the policy considerations of biochar feedstock management, production, and application suitability, in addition to supply chains, particularly in Europe, Korea, and Australia. We found that lack of universal standards, limited industrial-scale data, and inadequate policies hinder the broader application of biochar products. To address these barriers, future research should prioritize unifying life cycle assessment of different biochar applications, developing equity-centered governance models to prevent monopolies over resources, and designing and scaling up pyrolysis technologies tailored to regional biomass waste availability. To stimulate a sustainable growth of the biochar market, a collaborative approach among governments, industry, and academia, along with robust policy incentives, is essential. Ultimately, a scalable and resilient biochar market is critical for unlocking its full environmental potential and ensuring its role in global sustainability efforts.
{"title":"Sustainable biochar: Market development and commercialization to achieve ESG goals","authors":"Sachini Supunsala Senadheera , Piumi Amasha Withana , Siming You , Daniel C.W. Tsang , Sung Yeon Hwang , Yong Sik Ok","doi":"10.1016/j.rser.2025.115744","DOIUrl":"10.1016/j.rser.2025.115744","url":null,"abstract":"<div><div>Biochar has traditionally been used as a soil amendment as it enhances carbon sequestration and soil fertility. In addition to agriculture, biochar has recently been used in various industrial sectors, including textiles, construction, waste management, renewable energy generation, and for climate change mitigation. However, biochar performance depends on the feedstock quality and properties. This review highlights the key breakthroughs in the potential for integration of biochar across diverse industries and the associated emerging business opportunities within the global biochar market. By incorporating techno-economic analyses, we evaluate the feasibility of biochar production technologies by evaluating their associated costs, benefits, risks, and uncertainties. This review focuses on the policy considerations of biochar feedstock management, production, and application suitability, in addition to supply chains, particularly in Europe, Korea, and Australia. We found that lack of universal standards, limited industrial-scale data, and inadequate policies hinder the broader application of biochar products. To address these barriers, future research should prioritize unifying life cycle assessment of different biochar applications, developing equity-centered governance models to prevent monopolies over resources, and designing and scaling up pyrolysis technologies tailored to regional biomass waste availability. To stimulate a sustainable growth of the biochar market, a collaborative approach among governments, industry, and academia, along with robust policy incentives, is essential. Ultimately, a scalable and resilient biochar market is critical for unlocking its full environmental potential and ensuring its role in global sustainability efforts.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"217 ","pages":"Article 115744"},"PeriodicalIF":16.3,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143851351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-21DOI: 10.1021/acs.jpclett.4c03033
Juan Bisquert
Published as part of <i>The Journal of Physical Chemistry Letters</i> special issue “Materials, Physics, and Chemistry of Neuromorphic Computing Systems”. In the era of artificial intelligence (AI), the rapid growth of unstructured data has created an urgent need for efficient, high-speed data processing and analysis. Traditional computing systems, rooted in the von Neumann architecture, struggle to keep pace due to inherent limitations, including restricted computational speed and increasing energy consumption. These challenges stem from the separation of processing and memory units, a problem known as the von Neumann bottleneck. To address these issues, researchers have turned to neuromorphic computing, which draws inspiration from the brain’s ability to perform parallel, energy-efficient operations with remarkable processing power and adaptability. Within the field of AI, notable examples of brain-inspired advances include artificial neural networks (ANNs) and deep learning (DL) neural networks, which are ANNs with several layers that lend themselves to learned feature representations. These have surpassed humans on many tasks such as pattern recognition, game playing, machine translation, and more. The algorithms are adapted to an ever-increasing range of machine learning (ML) tasks. Spiking neural networks (SNN) are of high current interest, both from the perspective of modeling neural networks of the brain and for exporting their fast-learning capability and energy efficiency into neuromorphic hardware. The goal of neuromorphic computational systems is a powerful advancement in technology that allows devices to gather data, analyze it in real time, and autonomously take actions based on the information received. A similar concept can be found in sensor computing, where sensors not only detect stimuli but also perform data conversion and processing at the point of data collection. This capability, known as in-sensor computing, reduces the need for extensive data transfer and system complexity, allowing connected devices to process information and make decisions locally─at the edge─rather than relying on a centralized system. By enabling faster, more intelligent decision-making at the edge, neuromorphic computing can transform industries and pave the way for a more connected, efficient, and intelligent future across numerous sectors, including healthcare, agriculture, manufacturing, and smart cities. Here we present the special issue Materials, Physics and Chemistry of Neuromorphic Computing Systems. There is considerable interest in attaining memory and computation functionalities based on a neurological understanding of physical and chemical phenomena, faithfully replicated in suitable devices, by detailed control of materials and surface properties at the micro- and nanoscale. Such types of functionalities can be defined by the physical chemistry analysis of different materials properties, to reproduce biological properties such as synapti
{"title":"Materials, Physics, and Chemistry of Neuromorphic Computing Systems","authors":"Juan Bisquert","doi":"10.1021/acs.jpclett.4c03033","DOIUrl":"https://doi.org/10.1021/acs.jpclett.4c03033","url":null,"abstract":"Published as part of <i>The Journal of Physical Chemistry Letters</i> special issue “Materials, Physics, and Chemistry of Neuromorphic Computing Systems”. In the era of artificial intelligence (AI), the rapid growth of unstructured data has created an urgent need for efficient, high-speed data processing and analysis. Traditional computing systems, rooted in the von Neumann architecture, struggle to keep pace due to inherent limitations, including restricted computational speed and increasing energy consumption. These challenges stem from the separation of processing and memory units, a problem known as the von Neumann bottleneck. To address these issues, researchers have turned to neuromorphic computing, which draws inspiration from the brain’s ability to perform parallel, energy-efficient operations with remarkable processing power and adaptability. Within the field of AI, notable examples of brain-inspired advances include artificial neural networks (ANNs) and deep learning (DL) neural networks, which are ANNs with several layers that lend themselves to learned feature representations. These have surpassed humans on many tasks such as pattern recognition, game playing, machine translation, and more. The algorithms are adapted to an ever-increasing range of machine learning (ML) tasks. Spiking neural networks (SNN) are of high current interest, both from the perspective of modeling neural networks of the brain and for exporting their fast-learning capability and energy efficiency into neuromorphic hardware. The goal of neuromorphic computational systems is a powerful advancement in technology that allows devices to gather data, analyze it in real time, and autonomously take actions based on the information received. A similar concept can be found in sensor computing, where sensors not only detect stimuli but also perform data conversion and processing at the point of data collection. This capability, known as in-sensor computing, reduces the need for extensive data transfer and system complexity, allowing connected devices to process information and make decisions locally─at the edge─rather than relying on a centralized system. By enabling faster, more intelligent decision-making at the edge, neuromorphic computing can transform industries and pave the way for a more connected, efficient, and intelligent future across numerous sectors, including healthcare, agriculture, manufacturing, and smart cities. Here we present the special issue Materials, Physics and Chemistry of Neuromorphic Computing Systems. There is considerable interest in attaining memory and computation functionalities based on a neurological understanding of physical and chemical phenomena, faithfully replicated in suitable devices, by detailed control of materials and surface properties at the micro- and nanoscale. Such types of functionalities can be defined by the physical chemistry analysis of different materials properties, to reproduce biological properties such as synapti","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"11 1","pages":""},"PeriodicalIF":6.475,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-21DOI: 10.1021/acs.jpclett.5c00633
Hongqiang Luo, Sijia Zhou, Lihua Lu, Zhongli Guo, Shanshan Zhao, Jianfeng Du, Yikai Yun, Mengyu Chen, Cheng Li
Halide perovskite memristors are rapidly emerging as promising candidates in the fields of neural network construction, logic operation, and biological synaptic simulation. Understanding the resistive switching mechanism, yet, is crucial for ensuring the stability and reproducibility of device performance. Here, we prepare quasi-2D perovskites with enhanced performance through the optimization of molecular, solvents, and dimensions. Subsequently, the switching process of the quasi-2D perovskite memristors is directly observed by a nondestructive in situ photoluminescence (PL) imaging microscope. In addition, the elemental composition of the conductive filaments (CFs) is analyzed, showing that devices with active metal top electrodes allow the presence of both active metal CFs and halogen vacancy CFs during the resistive switching process. This work provides valuable insights into the switching mechanisms of quasi-2D perovskite memristors and enhances the prospects for their applications.
{"title":"Mechanistic Insights into the Resistive Switching Mechanism of Quasi-2D Perovskite Memristors","authors":"Hongqiang Luo, Sijia Zhou, Lihua Lu, Zhongli Guo, Shanshan Zhao, Jianfeng Du, Yikai Yun, Mengyu Chen, Cheng Li","doi":"10.1021/acs.jpclett.5c00633","DOIUrl":"https://doi.org/10.1021/acs.jpclett.5c00633","url":null,"abstract":"Halide perovskite memristors are rapidly emerging as promising candidates in the fields of neural network construction, logic operation, and biological synaptic simulation. Understanding the resistive switching mechanism, yet, is crucial for ensuring the stability and reproducibility of device performance. Here, we prepare quasi-2D perovskites with enhanced performance through the optimization of molecular, solvents, and dimensions. Subsequently, the switching process of the quasi-2D perovskite memristors is directly observed by a nondestructive <i>in situ</i> photoluminescence (PL) imaging microscope. In addition, the elemental composition of the conductive filaments (CFs) is analyzed, showing that devices with active metal top electrodes allow the presence of both active metal CFs and halogen vacancy CFs during the resistive switching process. This work provides valuable insights into the switching mechanisms of quasi-2D perovskite memristors and enhances the prospects for their applications.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"45 1","pages":""},"PeriodicalIF":6.475,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An acid or hydrogen gas-free electrochemical protocol is established for the hydrogenation of strained rings (cyclopropane and cyclobutane) at room temperature and atmospheric pressure. The mechanistic study revealed that the reaction was initiated via the reduction of the carbonyl group. The methodology is highly specific toward strained rings such as cyclopropane and cyclobutane, which exhibit broad functional group tolerance.
{"title":"Strain-Releasing Hydrogenation of Donor–Acceptor Cyclopropanes and Cyclobutanes via Electrochemical Site Selective Carbonyl Reduction","authors":"Nakshatra Banerjee, Rakesh Kumar, Biswadeep Manna, Prabal Banerjee","doi":"10.1021/acs.joc.5c00180","DOIUrl":"https://doi.org/10.1021/acs.joc.5c00180","url":null,"abstract":"An acid or hydrogen gas-free electrochemical protocol is established for the hydrogenation of strained rings (cyclopropane and cyclobutane) at room temperature and atmospheric pressure. The mechanistic study revealed that the reaction was initiated via the reduction of the carbonyl group. The methodology is highly specific toward strained rings such as cyclopropane and cyclobutane, which exhibit broad functional group tolerance.","PeriodicalId":57,"journal":{"name":"Journal of Organic Chemistry","volume":"219 1","pages":""},"PeriodicalIF":4.354,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-21DOI: 10.1016/j.rser.2025.115758
Lin Yuan , Zhengqiu Ding , Xin Pan , Chong Shi , Fei Lao , Philipp Grundmann , Jihong Wu
The expanding global population presents challenges for food production systems that extend beyond socio-economic considerations to encompass urgent climate-related disruptions. The agri-food sector is one of the largest contributors to greenhouse gas (GHG) emissions, emphasizing the critical need for sustainable practices aligned with Sustainable Development Goals. Crop processing by-products (CPBPs) from the food supply chain offer a promising approach for reducing environmental impact while generating social and economic benefits. This review examines the rational utilization pathways for sugarcane and citrus processing by-products, two of the most produced and underutilized crops globally, to mitigate GHG emissions. A comprehensive comparison of traditional and emerging management practices reveals that innovative CPBP utilization chains targeting food, chemicals, and energy provide substantial environmental advantages. Specifically, bioconversion processes, such as fermentation and anaerobic digestion for biogas and bioethanol production, exhibit notably lower emissions than chemical conversion methods. Moreover, the emerging development of integrated biorefinery systems demonstrates significant potential for low-emission utilization of CPBPs. These findings highlight the need for continued research into circular bioeconomy frameworks and standardized environmental assessment protocols to optimize CPBP valorization and contribute to global sustainability goals.
{"title":"Greenhouse gas emissions and reduction potentials in the crop processing by-products utilization chains: A review on citrus and sugarcane by-products","authors":"Lin Yuan , Zhengqiu Ding , Xin Pan , Chong Shi , Fei Lao , Philipp Grundmann , Jihong Wu","doi":"10.1016/j.rser.2025.115758","DOIUrl":"10.1016/j.rser.2025.115758","url":null,"abstract":"<div><div>The expanding global population presents challenges for food production systems that extend beyond socio-economic considerations to encompass urgent climate-related disruptions. The agri-food sector is one of the largest contributors to greenhouse gas (GHG) emissions, emphasizing the critical need for sustainable practices aligned with Sustainable Development Goals. Crop processing by-products (CPBPs) from the food supply chain offer a promising approach for reducing environmental impact while generating social and economic benefits. This review examines the rational utilization pathways for sugarcane and citrus processing by-products, two of the most produced and underutilized crops globally, to mitigate GHG emissions. A comprehensive comparison of traditional and emerging management practices reveals that innovative CPBP utilization chains targeting food, chemicals, and energy provide substantial environmental advantages. Specifically, bioconversion processes, such as fermentation and anaerobic digestion for biogas and bioethanol production, exhibit notably lower emissions than chemical conversion methods. Moreover, the emerging development of integrated biorefinery systems demonstrates significant potential for low-emission utilization of CPBPs. These findings highlight the need for continued research into circular bioeconomy frameworks and standardized environmental assessment protocols to optimize CPBP valorization and contribute to global sustainability goals.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"217 ","pages":"Article 115758"},"PeriodicalIF":16.3,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143854619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-21DOI: 10.1016/j.rser.2025.115754
Qian Wang , Weijian Yuan , Yuheng Zhang , Xinyue Chi , Dianpeng Qi , Xuelin Zhang
Covalent organic frameworks (COFs) exhibit distinct advantages such as extensive specific surface areas, chemical versatility, and sustainability, render them superb candidates for applications in the field of photocatalytic CO2 reduction. In recent years, numerous COFs with remarkable photocatalytic CO2 reduction activity have been reported, and extensive studies have been conducted to understand the mechanisms underlying the enhancement of their photocatalytic activity. This review delves into three pivotal areas: COF design, post-synthetic modifications, and composite photocatalyst construction. It uniquely examines the intricate structure-performance relationship at the molecular level, emphasizing topology, donor-acceptor interactions, crystallinity, functional groups, and heteroatom doping, thereby refining the design framework for COF-based photocatalysts. Moreover, the review offers a profound mechanistic analysis of CO2 reduction, encompassing charge transfer, reaction intermediates, and surface kinetics, providing fresh insights into the efficient development of COF-based photocatalysts.
{"title":"Tailoring the structural design of covalent organic frameworks for enhanced photocatalytic carbon dioxide reduction: a review","authors":"Qian Wang , Weijian Yuan , Yuheng Zhang , Xinyue Chi , Dianpeng Qi , Xuelin Zhang","doi":"10.1016/j.rser.2025.115754","DOIUrl":"10.1016/j.rser.2025.115754","url":null,"abstract":"<div><div>Covalent organic frameworks (COFs) exhibit distinct advantages such as extensive specific surface areas, chemical versatility, and sustainability, render them superb candidates for applications in the field of photocatalytic CO<sub>2</sub> reduction. In recent years, numerous COFs with remarkable photocatalytic CO<sub>2</sub> reduction activity have been reported, and extensive studies have been conducted to understand the mechanisms underlying the enhancement of their photocatalytic activity. This review delves into three pivotal areas: COF design, post-synthetic modifications, and composite photocatalyst construction. It uniquely examines the intricate structure-performance relationship at the molecular level, emphasizing topology, donor-acceptor interactions, crystallinity, functional groups, and heteroatom doping, thereby refining the design framework for COF-based photocatalysts. Moreover, the review offers a profound mechanistic analysis of CO<sub>2</sub> reduction, encompassing charge transfer, reaction intermediates, and surface kinetics, providing fresh insights into the efficient development of COF-based photocatalysts.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"217 ","pages":"Article 115754"},"PeriodicalIF":16.3,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143851349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-21DOI: 10.1016/j.rser.2025.115746
Xin Wang , Shuang Liu , Tian Li , Dekang Li
Owing to the rapid growth of advanced manufacturing, particulate pollutants generated during machining processes pose significant risks to human health, equipment safety, atmosphere quality and climate. Current industrial control technologies struggle to effectively remove these particles. Acoustic agglomeration technology is an effective particle pretreatment that uses acoustic waves to facilitate the growth and subsequent removal of particles.
Particle dynamics simulation is adept at depicting particle acoustic agglomeration. It utilises numerical algorithms to address the general dynamic equation (GDE), which quantifies the evolution of particle dynamics. Using conventional numerical techniques to solve the GDE is challenging because of its typical partial integro-differential nature and the intricate agglomeration mechanisms it encompasses. Therefore, drawing on acoustic agglomeration GDE, the research provide a comprehensive review of the characteristics and recent research progress of various algorithms used to solve the GDE of acoustic agglomeration, including method of moments, partition method, the Monte Carlo (MC) algorithm and discrete element method (DEM). MC algorithm, DEM and the coupling of DEM and other method are reviewed in detail. Finally, limitations and future opportunities are discussed about algorithm's applications. This review offers valuable insights into visualising particle acoustic agglomeration, elucidating its microscopic mechanisms and predicting its macroscopic effects on particle agglomeration. Meanwhile, it provides a comprehensive perspective for the optimization, integration and innovation of subsequent numerical algorithms. Thereby, the healthy industrial environment is established, and the achievement of the Sustainable Development Goals is advanced.
{"title":"Review on numerical algorithms for solving general dynamic equations of the acoustic agglomeration","authors":"Xin Wang , Shuang Liu , Tian Li , Dekang Li","doi":"10.1016/j.rser.2025.115746","DOIUrl":"10.1016/j.rser.2025.115746","url":null,"abstract":"<div><div>Owing to the rapid growth of advanced manufacturing, particulate pollutants generated during machining processes pose significant risks to human health, equipment safety, atmosphere quality and climate. Current industrial control technologies struggle to effectively remove these particles. Acoustic agglomeration technology is an effective particle pretreatment that uses acoustic waves to facilitate the growth and subsequent removal of particles.</div><div>Particle dynamics simulation is adept at depicting particle acoustic agglomeration. It utilises numerical algorithms to address the general dynamic equation (GDE), which quantifies the evolution of particle dynamics. Using conventional numerical techniques to solve the GDE is challenging because of its typical partial integro-differential nature and the intricate agglomeration mechanisms it encompasses. Therefore, drawing on acoustic agglomeration GDE, the research provide a comprehensive review of the characteristics and recent research progress of various algorithms used to solve the GDE of acoustic agglomeration, including method of moments, partition method, the Monte Carlo (MC) algorithm and discrete element method (DEM). MC algorithm, DEM and the coupling of DEM and other method are reviewed in detail. Finally, limitations and future opportunities are discussed about algorithm's applications. This review offers valuable insights into visualising particle acoustic agglomeration, elucidating its microscopic mechanisms and predicting its macroscopic effects on particle agglomeration. Meanwhile, it provides a comprehensive perspective for the optimization, integration and innovation of subsequent numerical algorithms. Thereby, the healthy industrial environment is established, and the achievement of the Sustainable Development Goals is advanced.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"217 ","pages":"Article 115746"},"PeriodicalIF":16.3,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143851350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The efficient catalytic elimination of toxic chlorinated aromatics (i.e., dioxins, chlorobenzenes, etc.) at low temperature is still a great challenge. Based on the VOx/TiO2 catalyst, a hydrolysis-oxidation strategy (CeOx and WOx doping) was built for desirable low-temperature catalytic activity, product selectivity, H2O tolerance, and chlorine desorption. The in situ and ex situ experimental characterizations and density functional theory calculations revealed that hydrolysis sites favored molecular adsorption, C–Cl cleavage, and HCl formation; meanwhile, oxidation sites enhanced the activation of reactive oxygen species and improved oxygen mobility and redox properties. The enhanced oxygen storage/release capacity (33–53 fold) and extended redox cycle (e.g., from V5+↔V4+ to V5+↔V4+↔V3+) favored the deep oxidation. The introduction of H2O triggered the hydrolysis–oxidation process that promoted the catalytic activity and chlorine desorption due to the elevated generation of ·O2– and higher-activity ·OH. Furthermore, the water resistance of the VOx/TiO2-based catalyst was enhanced after the application of the hydrolysis–oxidation strategy. The V–Ce–W/Ti catalyst exhibited remarkable removal efficiency of dioxins (96.7–98.2%), which was reduced from 0.34–0.48 ng I-TEQ Nm–3 to 0.006–0.016 ng I-TEQ Nm–3 during pilot tests at 160–180 °C, achieving ultralow emissions. This work provides practical guidance for industry development for efficiently eliminating chlorinated organics in flue gas.
{"title":"Synergistic Enhancement of Hydrolysis–Oxidation Drives Efficient Catalytic Elimination of Chlorinated Aromatics over VOx/TiO2 Catalysts at Low Temperature","authors":"Yunfeng Ma, Jianwen Lai, Bingcheng Lin, Xiaoqing Lin, Jiabao Lv, Fanxiang Meng, Zhongkang Han, Runtong Dong, Rong Jin, Guorui Liu, Masaki Takaoka, Xiaodong Li, Minghui Zheng","doi":"10.1021/acs.est.4c13995","DOIUrl":"https://doi.org/10.1021/acs.est.4c13995","url":null,"abstract":"The efficient catalytic elimination of toxic chlorinated aromatics (i.e., dioxins, chlorobenzenes, etc.) at low temperature is still a great challenge. Based on the VO<sub><i>x</i></sub>/TiO<sub>2</sub> catalyst, a hydrolysis-oxidation strategy (CeO<sub><i>x</i></sub> and WO<sub><i>x</i></sub> doping) was built for desirable low-temperature catalytic activity, product selectivity, H<sub>2</sub>O tolerance, and chlorine desorption. The in situ and ex situ experimental characterizations and density functional theory calculations revealed that hydrolysis sites favored molecular adsorption, C–Cl cleavage, and HCl formation; meanwhile, oxidation sites enhanced the activation of reactive oxygen species and improved oxygen mobility and redox properties. The enhanced oxygen storage/release capacity (33–53 fold) and extended redox cycle (e.g., from V<sup>5+</sup>↔V<sup>4+</sup> to V<sup>5+</sup>↔V<sup>4+</sup>↔V<sup>3+</sup>) favored the deep oxidation. The introduction of H<sub>2</sub>O triggered the hydrolysis–oxidation process that promoted the catalytic activity and chlorine desorption due to the elevated generation of ·O<sub>2</sub><sup>–</sup> and higher-activity ·OH. Furthermore, the water resistance of the VO<sub><i>x</i></sub>/TiO<sub>2</sub>-based catalyst was enhanced after the application of the hydrolysis–oxidation strategy. The V–Ce–W/Ti catalyst exhibited remarkable removal efficiency of dioxins (96.7–98.2%), which was reduced from 0.34–0.48 ng I-TEQ Nm<sup>–3</sup> to 0.006–0.016 ng I-TEQ Nm<sup>–3</sup> during pilot tests at 160–180 °C, achieving ultralow emissions. This work provides practical guidance for industry development for efficiently eliminating chlorinated organics in flue gas.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"6 1","pages":""},"PeriodicalIF":9.028,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-21DOI: 10.1016/j.jmro.2025.100200
Ligang Xu , Yuqi Li , Yongchao shi , Yachao Yan , Wengui Yu , Huajie Luo , Jipeng Fu , Haiyan Zheng , Mingxue Tang
The rise of the new energy market has driven the rapid development of solid-state batteries (SSBs). Polymer electrolytes, due to their excellent interfacial compatibility and high safety, have brought new opportunities to SSBs. We report a polymer side-chain design strategy that combines ionic liquids and low-molecular-weight ether-based molecules into a copolymer electrolyte (CPE). Using nuclear magnetic resonance (NMR) techniques, we investigated the spatial distribution of lithium ions (Li+) and the correlations between anions of different conformations in the CPE. This study found that the introduced ionic liquids and high-freedom ether groups enable rapid ion migration, resulting in an ion conductivity of 1.44 × 10–4 S cm-1 at 25 °C. The dual lithium symmetric battery based on CPE can cycle more than1000 h at a current density of 0.3 mA cm-2, while the LFP|CPE|Li full battery presents high retention after 120 cycles even at ultra-high loading (12.9 mg cm-2) and a high current density of 1 C.
{"title":"Understanding the correlation between ion transport and side chains in polymer electrolyte","authors":"Ligang Xu , Yuqi Li , Yongchao shi , Yachao Yan , Wengui Yu , Huajie Luo , Jipeng Fu , Haiyan Zheng , Mingxue Tang","doi":"10.1016/j.jmro.2025.100200","DOIUrl":"10.1016/j.jmro.2025.100200","url":null,"abstract":"<div><div>The rise of the new energy market has driven the rapid development of solid-state batteries (SSBs). Polymer electrolytes, due to their excellent interfacial compatibility and high safety, have brought new opportunities to SSBs. We report a polymer side-chain design strategy that combines ionic liquids and low-molecular-weight ether-based molecules into a copolymer electrolyte (CPE). Using nuclear magnetic resonance (NMR) techniques, we investigated the spatial distribution of lithium ions (Li<sup>+</sup>) and the correlations between anions of different conformations in the CPE. This study found that the introduced ionic liquids and high-freedom ether groups enable rapid ion migration, resulting in an ion conductivity of 1.44 × 10<sup>–4</sup> S cm<sup>-1</sup> at 25 °C. The dual lithium symmetric battery based on CPE can cycle more than1000 h at a current density of 0.3 mA cm<sup>-2</sup>, while the LFP|CPE|Li full battery presents high retention after 120 cycles even at ultra-high loading (12.9 mg cm<sup>-2</sup>) and a high current density of 1 C.</div></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"23 ","pages":"Article 100200"},"PeriodicalIF":2.624,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}