首页 > 最新文献

农学最新文献

英文 中文
IF:
Detection and counting method of juvenile abalones based on improved SSD network 基于改进SSD网络的鲍鱼幼鱼检测计数方法
IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.inpa.2023.03.002

Detection and counting of abalones is one of key technologies of abalones breeding density estimation. The abalones in the breeding stage are small in size, densely distributed, and occluded between individuals, so the existing object detection algorithms have low precision for detecting the abalones in the breeding stage. To solve this problem, a detection and counting method of juvenile abalones based on improved SSD network is proposed in this research. The innovation points of this method are: Firstly, the multi-layer feature dynamic fusion method is proposed to obtain more color and texture information and improve detection precision of juvenile abalones with small size; secondly, the multi-scale attention feature extraction method is proposed to highlight shape and edge feature information of juvenile abalones and increase detection precision of juvenile abalones with dense distribution and individual coverage; finally, the loss feedback training method is used to increase the diversity of data and the pixels of juvenile abalones in the images to get the even higher detection precision of juvenile abalones with small size. The experimental results show that the [email protected] value, [email protected] value and [email protected] value of the detection results of the proposed method are 91.14%, 89.90% and 80.14%, respectively. The precision and recall rates of the counting results are 99.59% and 97.74%, respectively, which are superior to the counting results of SSD, FSSD, MutualGuide, EfficientDet and VarifocalNet models. The proposed method can provide support for real-time monitoring of aquaculture density for juvenile abalones.

鲍鱼的检测和计数是鲍鱼繁殖密度估计的关键技术之一。繁殖期的鲍鱼个体较小,分布密集,且个体之间存在遮挡,因此现有的物体检测算法对繁殖期鲍鱼的检测精度较低。为解决这一问题,本研究提出了一种基于改进的 SSD 网络的幼鲍检测与计数方法。该方法的创新点在于首先,提出了多层特征动态融合方法,以获取更多的颜色和纹理信息,提高对小体型幼鲍的检测精度;其次,提出了多尺度注意力特征提取方法,以突出幼鲍的形状和边缘特征信息,提高对密集分布和个体覆盖的幼鲍的检测精度;最后,采用损失反馈训练方法,增加图像中数据和幼鲍像素的多样性,以获得更高的小体型幼鲍的检测精度。实验结果表明,所提方法检测结果的[email protected]值、[email protected]值和[email protected]值分别为 91.14%、89.90%和 80.14%。计数结果的精确率和召回率分别为 99.59% 和 97.74%,优于 SSD、FSSD、MutualGuide、EfficientDet 和 VarifocalNet 模型的计数结果。所提出的方法可为实时监测鲍鱼幼体的养殖密度提供支持。
{"title":"Detection and counting method of juvenile abalones based on improved SSD network","authors":"","doi":"10.1016/j.inpa.2023.03.002","DOIUrl":"10.1016/j.inpa.2023.03.002","url":null,"abstract":"<div><p>Detection and counting of abalones is one of key technologies of abalones breeding density estimation. The abalones in the breeding stage are small in size, densely distributed, and occluded between individuals, so the existing object detection algorithms have low precision for detecting the abalones in the breeding stage. To solve this problem, a detection and counting method of juvenile abalones based on improved SSD network is proposed in this research. The innovation points of this method are: Firstly, the multi-layer feature dynamic fusion method is proposed to obtain more color and texture information and improve detection precision of juvenile abalones with small size; secondly, the multi-scale attention feature extraction method is proposed to highlight shape and edge feature information of juvenile abalones and increase detection precision of juvenile abalones with dense distribution and individual coverage; finally, the loss feedback training method is used to increase the diversity of data and the pixels of juvenile abalones in the images to get the even higher detection precision of juvenile abalones with small size. The experimental results show that the [email protected] value, [email protected] value and [email protected] value of the detection results of the proposed method are 91.14%, 89.90% and 80.14%, respectively. The precision and recall rates of the counting results are 99.59% and 97.74%, respectively, which are superior to the counting results of SSD, FSSD, MutualGuide, EfficientDet and VarifocalNet models. The proposed method can provide support for real-time monitoring of aquaculture density for juvenile abalones.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 3","pages":"Pages 325-336"},"PeriodicalIF":7.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221431732300046X/pdfft?md5=0e659a821a078f0956cfc5f7356a7af0&pid=1-s2.0-S221431732300046X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43549565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR/Gal4BD-Cas donor adapting systems based on miniaturized Cas proteins for improved gene editing. 基于小型化 Cas 蛋白的 CRISPR/Gal4BD-Cas 供体适配系统,用于改进基因编辑。
Q3 Medicine Pub Date : 2024-09-01 DOI: 10.16288/j.yczz.24-124
Sen Yang, Bao-Xia Ma, Hong-Run Qian, Jie-Yu Cui, Xiao-Jun Zhang, Li-da Li, Ze-Hui Wei, Zhi-Ying Zhang, Jian-Gang Wang, Kun Xu

Targeted precise point editing and knock-in can be achieved by homology-directed repair(HDR) based gene editing strategies in mammalian cells. However, the inefficiency of HDR strategies seriously restricts their application in precision medicine and molecular design breeding. In view of the problem that exogenous donor DNA cannot be efficiently recruited autonomously at double-stranded breaks(DSBs) when using HDR strategies for gene editing, the concept of donor adapting system(DAS) was proposed and the CRISPR/Cas9-Gal4BD DAS was developed previously. Due to the large size of SpCas9 protein, its fusion with the Gal4BD adaptor is inconvenient for protein expression, virus vector packaging and in vivo delivery. In this study, two novel CRISPR/Gal4BD-SlugCas9 and CRISPR/Gal4BD-AsCas12a DASs were further developed, using two miniaturized Cas proteins, namely SlugCas9-HF derived from Staphylococcus lugdunensis and AsCas12a derived from Acidaminococcus sp. Firstly, the SSA reporter assay was used to assess the targeting activity of different Cas-Gal4BD fusions, and the results showed that the fusion of Gal4BD with SlugCas9 and AsCas12a N-terminals had minimal distraction on their activities. Secondly, the HDR efficiency reporter assay was conducted for the functional verification of the two DASs and the corresponding donor patterns were optimized simultaneously. The results demonstrated that the fusion of the Gal4BD adaptor binding sequence at the 5'-end of intent dsDNA template (BS-dsDNA) was better for the CRISPR/Gal4BD-AsCas12a DAS, while for the CRISPR/Gal4BD-SlugCas9 DAS, the dsDNA-BS donor pattern was recommended. Finally, CRISPR/Gal4BD-SlugCas9 DAS was used to achieve gene editing efficiency of 24%, 37% and 31% respectively for EMX1, NUDT5 and AAVS1 gene loci in HEK293T cells, which was significantly increased compared with the controls. In conclusion, this study provides a reference for the subsequent optimization of the donor adapting systems, and expands the gene editing technical toolbox for the researches on animal molecular design breeding.

基于同源定向修复(HDR)的基因编辑策略可以在哺乳动物细胞中实现靶向精确点编辑和基因敲入。然而,HDR 策略的低效率严重制约了其在精准医学和分子设计育种中的应用。鉴于在使用 HDR 策略进行基因编辑时,外源供体 DNA 无法在双链断裂(DSB)处有效地自主招募,人们提出了供体适配系统(DAS)的概念,并开发了 CRISPR/Cas9-Gal4BD DAS。由于SpCas9蛋白体积较大,其与Gal4BD适配体融合后不便于蛋白表达、病毒载体包装和体内递送。本研究利用两种小型化的Cas蛋白,即来源于卢格杜氏葡萄球菌的SlugCas9-HF和来源于酸性球菌的AsCas12a,进一步开发了两种新型的CRISPR/Gal4BD-SlugCas9和CRISPR/Gal4BD-AsCas12a DAS。结果表明,Gal4BD 与 SlugCas9 和 AsCas12a N 端融合对其活性的影响极小。其次,为验证两种DAS的功能,进行了HDR效率报告实验,并同时优化了相应的供体模式。结果表明,在CRISPR/Gal4BD-AsCas12a DAS中,意向dsDNA模板5'端融合Gal4BD适配体结合序列(BS-dsDNA)的效果更好;而在CRISPR/Gal4BD-SlugCas9 DAS中,推荐使用dsDNA-BS供体模式。最后,利用CRISPR/Gal4BD-SlugCas9 DAS在HEK293T细胞中对EMX1、NUDT5和AAVS1基因位点的基因编辑效率分别达到24%、37%和31%,与对照组相比显著提高。总之,本研究为后续供体适配系统的优化提供了参考,为动物分子设计育种研究拓展了基因编辑技术工具箱。
{"title":"CRISPR/Gal4BD-Cas donor adapting systems based on miniaturized Cas proteins for improved gene editing.","authors":"Sen Yang, Bao-Xia Ma, Hong-Run Qian, Jie-Yu Cui, Xiao-Jun Zhang, Li-da Li, Ze-Hui Wei, Zhi-Ying Zhang, Jian-Gang Wang, Kun Xu","doi":"10.16288/j.yczz.24-124","DOIUrl":"https://doi.org/10.16288/j.yczz.24-124","url":null,"abstract":"<p><p>Targeted precise point editing and knock-in can be achieved by homology-directed repair(HDR) based gene editing strategies in mammalian cells. However, the inefficiency of HDR strategies seriously restricts their application in precision medicine and molecular design breeding. In view of the problem that exogenous donor DNA cannot be efficiently recruited autonomously at double-stranded breaks(DSBs) when using HDR strategies for gene editing, the concept of donor adapting system(DAS) was proposed and the CRISPR/Cas9-Gal4BD DAS was developed previously. Due to the large size of SpCas9 protein, its fusion with the Gal4BD adaptor is inconvenient for protein expression, virus vector packaging and <i>in vivo</i> delivery. In this study, two novel CRISPR/Gal4BD-SlugCas9 and CRISPR/Gal4BD-AsCas12a DASs were further developed, using two miniaturized Cas proteins, namely SlugCas9-HF derived from <i>Staphylococcus lugdunensis</i> and AsCas12a derived from <i>Acidaminococcus</i> sp<i>.</i> Firstly, the SSA reporter assay was used to assess the targeting activity of different Cas-Gal4BD fusions, and the results showed that the fusion of Gal4BD with SlugCas9 and AsCas12a N-terminals had minimal distraction on their activities. Secondly, the HDR efficiency reporter assay was conducted for the functional verification of the two DASs and the corresponding donor patterns were optimized simultaneously. The results demonstrated that the fusion of the Gal4BD adaptor binding sequence at the 5'-end of intent dsDNA template (BS-dsDNA) was better for the CRISPR/Gal4BD-AsCas12a DAS, while for the CRISPR/Gal4BD-SlugCas9 DAS, the dsDNA-BS donor pattern was recommended. Finally, CRISPR/Gal4BD-SlugCas9 DAS was used to achieve gene editing efficiency of 24%, 37% and 31% respectively for <i>EMX1, NUDT5</i> and <i>AAVS1</i> gene loci in HEK293T cells, which was significantly increased compared with the controls. In conclusion, this study provides a reference for the subsequent optimization of the donor adapting systems, and expands the gene editing technical toolbox for the researches on animal molecular design breeding.</p>","PeriodicalId":35536,"journal":{"name":"Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji","volume":"46 9","pages":"716-726"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142297199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of expression characteristics and identification of interaction proteins of transcription factor BnaABI5 in Brassica napus. 分析甘蓝型油菜转录因子 BnaABI5 的表达特征并鉴定其相互作用蛋白
Q3 Medicine Pub Date : 2024-09-01 DOI: 10.16288/j.yczz.24-064
Qian-Qian Ao, Fang-Xiao Lu, Liu-Qing Yang, Chun Li, Zeng-Kang Zhai, Dong-Ye Jia, Yuan-Qing Jiang, Bo Yang

Rapeseed is one important oil crop in China. However, its planting benefit is frequently affected by environmental stresses such as drought in the northwest region of China. The abscisic acid(ABA) signaling pathway plays an important role in plant abiotic stress response and tolerance, and ABFs/AREBs(ABA-responsive element binding factors/ABA-responsive element binding proteins) are the core transcription factors that regulate the expression of ABA-responsive genes. To dissect the key transcription factors mediated abiotic stress, we mainly characterized abscisic acid insensitive 5(BnaABI5) in rapeseed, including its subcellular localization, expression pattern in response to various stress and tissue-specific expression analysis, transcriptional activity analysis as well as interaction screening with BnaMPKs(mitogen-activated protein kinases). Our results showed that the BnaABI5-GFP fusion protein was localized in the nucleus, and its transcript level is induced by drought stress and was mainly expressed in the roots of rapeseed. Furthermore, BnaABI5 showed transcriptional activation activity through a yeast transactivation assay and it also activated the promoter activity of EM6 target gene in the transient expression system in tobacco leaves. Moreover, BnaABI5 interacted with BnaMPK6 and BnaMPK13 through BiFC and Y2H analysis. This study preliminarily explored the expression characteristics of transcription factor BnaABI5 and its interaction with BnaMPKs, which might help us for further understanding the function of BnaABI5.

油菜籽是中国重要的油料作物之一。然而,在中国西北地区,其种植效益经常受到干旱等环境胁迫的影响。脱落酸(ABA)信号通路在植物非生物胁迫响应和耐受中起着重要作用,而ABFs/AREBs(ABA反应元件结合因子/ABA反应元件结合蛋白)是调控ABA反应基因表达的核心转录因子。为了研究介导非生物胁迫的关键转录因子,我们主要对油菜中脱落酸不敏感5(BnaABI5)进行了表征,包括其亚细胞定位、对各种胁迫响应的表达模式和组织特异性表达分析、转录活性分析以及与BnaMPKs(丝裂原活化蛋白激酶)的相互作用筛选。结果表明,BnaABI5-GFP融合蛋白定位于细胞核,其转录水平受干旱胁迫诱导,主要在油菜根部表达。此外,通过酵母转录激活试验,BnaABI5显示出转录激活活性,在烟草叶片瞬时表达系统中,它也激活了EM6靶基因的启动子活性。此外,通过BiFC和Y2H分析,BnaABI5还与BnaMPK6和BnaMPK13相互作用。本研究初步探讨了转录因子BnaABI5的表达特征及其与BnaMPKs的相互作用,这可能有助于我们进一步了解BnaABI5的功能。
{"title":"Analysis of expression characteristics and identification of interaction proteins of transcription factor BnaABI5 in <i>Brassica napus</i>.","authors":"Qian-Qian Ao, Fang-Xiao Lu, Liu-Qing Yang, Chun Li, Zeng-Kang Zhai, Dong-Ye Jia, Yuan-Qing Jiang, Bo Yang","doi":"10.16288/j.yczz.24-064","DOIUrl":"10.16288/j.yczz.24-064","url":null,"abstract":"<p><p>Rapeseed is one important oil crop in China. However, its planting benefit is frequently affected by environmental stresses such as drought in the northwest region of China. The abscisic acid(ABA) signaling pathway plays an important role in plant abiotic stress response and tolerance, and ABFs/AREBs(ABA-responsive element binding factors/ABA-responsive element binding proteins) are the core transcription factors that regulate the expression of ABA-responsive genes. To dissect the key transcription factors mediated abiotic stress, we mainly characterized abscisic acid insensitive 5(BnaABI5) in rapeseed, including its subcellular localization, expression pattern in response to various stress and tissue-specific expression analysis, transcriptional activity analysis as well as interaction screening with BnaMPKs(mitogen-activated protein kinases). Our results showed that the BnaABI5-GFP fusion protein was localized in the nucleus, and its transcript level is induced by drought stress and was mainly expressed in the roots of rapeseed. Furthermore, BnaABI5 showed transcriptional activation activity through a yeast transactivation assay and it also activated the promoter activity of <i>EM6</i> target gene in the transient expression system in tobacco leaves. Moreover, BnaABI5 interacted with BnaMPK6 and BnaMPK13 through BiFC and Y2H analysis. This study preliminarily explored the expression characteristics of transcription factor BnaABI5 and its interaction with BnaMPKs, which might help us for further understanding the function of BnaABI5.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"46 9","pages":"737-749"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142297198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A low-cost digital 3D insect scanner 一种低成本的数字3D昆虫扫描仪
IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.inpa.2023.03.003

Collections of biological specimens are essential in entomology laboratories for scientific knowledge and the characterization of natural varieties. It is vital to liberate useful information from physical collections by digitizing specimens, allowing them to be shared, examined, annotated, and compared more readily. As a result, current research has concentrated on developing 3D modeling machine systems to digitize insect specimens. Despite many great outcomes, these systems have certain drawbacks. In this research, a new scanning machine is proposed for creating 3D virtual models of insects. Our method has overcome certain previous constraints by aiding in the automation of the entire imaging process at a low cost, lowering shooting time, and generating 3D models with accurate color, high resolution, and high accuracy of insect samples with small sizes and complicated structures. Because of its ease of installation and modification, our system may be expanded and utilized in a variety of settings and areas.

在昆虫学实验室中,收集生物标本对于获取科学知识和描述自然物种特征至关重要。通过对标本进行数字化处理,使其更易于共享、检查、注释和比较,从而从实物收藏中获取有用信息至关重要。因此,目前的研究主要集中在开发三维建模机器系统,以实现昆虫标本的数字化。尽管这些系统取得了很多成果,但也存在一些缺点。本研究提出了一种新的扫描机器,用于创建昆虫的三维虚拟模型。我们的方法克服了以往的一些限制,以较低的成本实现了整个成像过程的自动化,缩短了拍摄时间,并能生成色彩准确、分辨率高、精度高的三维模型,适用于体积小、结构复杂的昆虫样本。由于其易于安装和修改,我们的系统可在各种环境和领域进行扩展和使用。
{"title":"A low-cost digital 3D insect scanner","authors":"","doi":"10.1016/j.inpa.2023.03.003","DOIUrl":"10.1016/j.inpa.2023.03.003","url":null,"abstract":"<div><p>Collections of biological specimens are essential in entomology laboratories for scientific knowledge and the characterization of natural varieties. It is vital to liberate useful information from physical collections by digitizing specimens, allowing them to be shared, examined, annotated, and compared more readily. As a result, current research has concentrated on developing 3D modeling machine systems to digitize insect specimens. Despite many great outcomes, these systems have certain drawbacks. In this research, a new scanning machine is proposed for creating 3D virtual models of insects. Our method has overcome certain previous constraints by aiding in the automation of the entire imaging process at a low cost, lowering shooting time, and generating 3D models with accurate color, high resolution, and high accuracy of insect samples with small sizes and complicated structures. Because of its ease of installation and modification, our system may be expanded and utilized in a variety of settings and areas.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 3","pages":"Pages 337-355"},"PeriodicalIF":7.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317323000471/pdfft?md5=db78072a9c6e7a9eeba9abb938606551&pid=1-s2.0-S2214317323000471-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45333040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress on CRISPR-Cas gene editing technology in sheep production. CRISPR-Cas 基因编辑技术在绵羊生产中的应用进展。
Q3 Medicine Pub Date : 2024-09-01 DOI: 10.16288/j.yczz.24-155
Dong-Xia Pan, Hui Wang, Ben-Hai Xiong, Xiang-Fang Tang

Gene editing is a kind of genetic engineering technology that can modify the genome. In recent years, with the rapid development of molecular biotechnology, the clustered regularly interspaced short palindromic repeats associated protein system has been widely used as a powerful gene editing tool due to its high efficiency, accuracy and flexibility. The CRISPR-Cas system makes a significant contribution to different aspects of livestock production by introducing site-specific modifications such as insertions, deletions or single base replacements at specific genomic sites. In terms of sheep production applications, by establishing animal models that improve production economic traits and disease resistance, the function of key genes can be studied to accelerate the improvement of traits, thereby accelerating the improvement of traits. In this review, we summarize the mechanism and function of CRISPR-Cas system and its application in the production of reproductive traits, meat use traits, wool production traits, lactation traits and disease resistance traits of sheep and the establishment of sheep animal models.

基因编辑是一种可以修改基因组的基因工程技术。近年来,随着分子生物技术的飞速发展,簇状规则间隔短回文重复序列相关蛋白系统以其高效、准确和灵活的特点,作为一种强大的基因编辑工具得到了广泛应用。CRISPR-Cas 系统通过在特定基因组位点引入插入、缺失或单碱基替换等特定位点修饰,为畜牧业生产的不同方面做出了重大贡献。在绵羊生产应用方面,通过建立提高生产经济性状和抗病能力的动物模型,可以研究关键基因的功能,从而加速性状的改良。在这篇综述中,我们总结了CRISPR-Cas系统的机理和功能及其在绵羊繁殖性状、肉用性状、产毛性状、泌乳性状和抗病性状的生产中的应用以及绵羊动物模型的建立。
{"title":"Progress on CRISPR-Cas gene editing technology in sheep production.","authors":"Dong-Xia Pan, Hui Wang, Ben-Hai Xiong, Xiang-Fang Tang","doi":"10.16288/j.yczz.24-155","DOIUrl":"https://doi.org/10.16288/j.yczz.24-155","url":null,"abstract":"<p><p>Gene editing is a kind of genetic engineering technology that can modify the genome. In recent years, with the rapid development of molecular biotechnology, the clustered regularly interspaced short palindromic repeats associated protein system has been widely used as a powerful gene editing tool due to its high efficiency, accuracy and flexibility. The CRISPR-Cas system makes a significant contribution to different aspects of livestock production by introducing site-specific modifications such as insertions, deletions or single base replacements at specific genomic sites. In terms of sheep production applications, by establishing animal models that improve production economic traits and disease resistance, the function of key genes can be studied to accelerate the improvement of traits, thereby accelerating the improvement of traits. In this review, we summarize the mechanism and function of CRISPR-Cas system and its application in the production of reproductive traits, meat use traits, wool production traits, lactation traits and disease resistance traits of sheep and the establishment of sheep animal models.</p>","PeriodicalId":35536,"journal":{"name":"Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji","volume":"46 9","pages":"690-700"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142297204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Key technologies and applications of rural energy internet in China 中国农村能源互联网的关键技术及应用
IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.inpa.2022.03.001

Rural energy plays an important role in realizing the goals of “carbon peak” and “carbon neutrality” in China. In this paper, the countryside was regarded as the research object, and the rural energy internet was constructed to study the impact of rural energy development on rural carbon emissions. The most advanced energy and informative technologies in the development of rural energy were introduced from three perspectives, including rural living, rural planting and rural breeding. The benefits of rural energy internet in practical application, including energy and carbon benefits, were presented through three application cases. In general, a low-carbon, digital and intelligent rural energy will be developed, and the goals of “carbon peak” and “carbon neutrality” will be achieved by constructing and applying of rural energy internet in China.

农村能源对我国实现 "碳峰值 "和 "碳中和 "目标具有重要作用。本文以农村为研究对象,构建农村能源互联网,研究农村能源发展对农村碳排放的影响。从农村生活、农村种植和农村养殖三个方面介绍了农村能源发展中最先进的能源技术和信息化技术。通过三个应用案例介绍了农村能源互联网在实际应用中的效益,包括能源效益和碳效益。总体而言,中国将通过农村能源互联网的建设和应用,发展低碳、数字、智能的农村能源,实现 "碳峰值 "和 "碳中和 "的目标。
{"title":"Key technologies and applications of rural energy internet in China","authors":"","doi":"10.1016/j.inpa.2022.03.001","DOIUrl":"10.1016/j.inpa.2022.03.001","url":null,"abstract":"<div><p>Rural energy plays an important role in realizing the goals of “carbon peak” and “carbon neutrality” in China. In this paper, the countryside was regarded as the research object, and the rural energy internet was constructed to study the impact of rural energy development on rural carbon emissions. The most advanced energy and informative technologies in the development of rural energy were introduced from three perspectives, including rural living, rural planting and rural breeding. The benefits of rural energy internet in practical application, including energy and carbon benefits, were presented through three application cases. In general, a low-carbon, digital and intelligent rural energy will be developed, and the goals of “carbon peak” and “carbon neutrality” will be achieved by constructing and applying of rural energy internet in China.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 3","pages":"Pages 277-298"},"PeriodicalIF":7.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317322000282/pdfft?md5=64eda4c88ae8eb55c157e27b6bc98064&pid=1-s2.0-S2214317322000282-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46987028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pig face recognition based on improved YOLOv4 lightweight neural network 基于改进的YOLOv4轻量级神经网络的猪人脸识别
IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.inpa.2023.03.004

With the vigorous development of intelligence agriculture, the progress of automated large-scale and intensive pig farming has accelerated significantly. As a biological feature, the pig face has important research significance for precise breeding of pigs and traceability of health. In the management of live pigs, many managers adopt traditional methods, including color marking and RFID identification, but there will be problems such as off-label, mixed-label and waste of manpower. This work proposes a non-invasive way to study the identification of multiple individuals in pigs. The model was to first replace the original backbone network of YOLOv4 with MobileNet-v3, a popular lightweight network. Then depth-wise separable convolution was adopted in YOLOv4′s feature extraction network SPP and PANet to further reduce network parameters. Moreover, CBAM attention mechanism formed by the concatenation of CAM and SAM was added to PANet to ensure the network accuracy while reducing the model weight. The introduction of multi-attention mechanism selectively strengthened key areas of pig face and filtered out weak correlation features, so as to improve the overall model effect. Finally, an improved MobileNetv3-YOLOv4-PACNet (M-YOLOv4-C) network model was proposed to identify individual sows. The mAP were 98.15 %, the detection speed FPS were 106.3frames/s, and the model parameter size was only 44.74 MB, which can be well implanted into the small-volume pig house management sensors and applied to the pig management system in a lightweight, fast and accurate manner. This model will provide model support for subsequent pig behavior recognition and posture analysis.

随着智慧农业的蓬勃发展,生猪养殖自动化规模化、集约化进程明显加快。猪脸作为一种生物特征,对生猪精准育种和健康追溯具有重要的研究意义。在生猪管理中,很多管理者采用传统方法,包括色标、RFID识别等,但会存在脱标、混标、浪费人力等问题。这项工作提出了一种非侵入式的方法来研究猪的多个体识别。该模型首先用流行的轻量级网络 MobileNet-v3 代替 YOLOv4 的原始主干网络。然后在 YOLOv4 的特征提取网络 SPP 和 PANet 中采用深度可分离卷积,进一步降低网络参数。此外,还在 PANet 中加入了由 CAM 和 SAM 组合而成的 CBAM 注意机制,以在降低模型权重的同时确保网络精度。多重关注机制的引入选择性地强化了猪脸的关键区域,过滤掉了弱相关特征,从而提高了整体模型效果。最后,提出了一种改进的 MobileNetv3-YOLOv4-PACNet (M-YOLOv4-C) 网络模型来识别母猪个体。该模型的mAP为98.15%,检测速度FPS为106.3帧/秒,模型参数大小仅为44.74 MB,可以很好地植入到小体积猪舍管理传感器中,轻便、快速、准确地应用到猪场管理系统中。该模型将为后续的猪只行为识别和姿态分析提供模型支持。
{"title":"Pig face recognition based on improved YOLOv4 lightweight neural network","authors":"","doi":"10.1016/j.inpa.2023.03.004","DOIUrl":"10.1016/j.inpa.2023.03.004","url":null,"abstract":"<div><p>With the vigorous development of intelligence agriculture, the progress of automated large-scale and intensive pig farming has accelerated significantly. As a biological feature, the pig face has important research significance for precise breeding of pigs and traceability of health. In the management of live pigs, many managers adopt traditional methods, including color marking and RFID identification, but there will be problems such as off-label, mixed-label and waste of manpower. This work proposes a non-invasive way to study the identification of multiple individuals in pigs. The model was to first replace the original backbone network of YOLOv4 with MobileNet-v3, a popular lightweight network. Then depth-wise separable convolution was adopted in YOLOv4′s feature extraction network SPP and PANet to further reduce network parameters. Moreover, CBAM attention mechanism formed by the concatenation of CAM and SAM was added to PANet to ensure the network accuracy while reducing the model weight. The introduction of multi-attention mechanism selectively strengthened key areas of pig face and filtered out weak correlation features, so as to improve the overall model effect. Finally, an improved MobileNetv3-YOLOv4-PACNet (M-YOLOv4-C) network model was proposed to identify individual sows. The mAP were 98.15 %, the detection speed FPS were 106.3frames/s, and the model parameter size was only 44.74 MB, which can be well implanted into the small-volume pig house management sensors and applied to the pig management system in a lightweight, fast and accurate manner. This model will provide model support for subsequent pig behavior recognition and posture analysis.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 3","pages":"Pages 356-371"},"PeriodicalIF":7.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317323000483/pdfft?md5=15cedd90f8b826def2e4ca0a3a7b3834&pid=1-s2.0-S2214317323000483-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46956825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a pathogenic variant and pre-implantation genetic testing for a Chinese family affected with split-hand/foot malformation. 为一个患有手足分离畸形的中国家庭鉴定致病变体并进行植入前基因检测。
Q3 Medicine Pub Date : 2024-09-01 DOI: 10.16288/j.yczz.24-141
Li-Bin Mei, Yi-Yuan Zhang, Xian-Jing Huang, Hong Ji, Ping-Ping Qiu, Lu Ding, Xuemei He, Ping Li

Split-hand/foot malformation is a serious congenital limb malformation characterized by syndactyly and underdevelopment of the phalanges and metatarsals. In this study, we reported a case of a fetus with hand-foot cleft deformity. Whole exome and Sanger sequencing were used to filter out candidate gene mutation sites and provide pre-implantation genetic testing(PGT) for family members. Genetic testing results showed that there was a homozygous mutation c.786G>A (p.Trp262*) in the fetal WNT10B, and both parents were carriers of heterozygous mutations. PGT results showed that out of the two blastocysts, one was a heterozygous mutant and the other was a homozygous mutant. All the embryos had diploid chromosomes. The heterozygous embryo was transferred, and a singleton pregnancy was successfully achieved. This study suggests that homozygous mutations in WNT10B are the likely cause of hand-foot clefts in this family. For families with monogenic diseases, preimplantation genetic testing can effectively prevent the birth of an affected child only after identifying the pathogenic mutation.

手足裂畸形是一种严重的先天性肢体畸形,其特征是趾骨和跖骨联合actyly和发育不全。本研究报告了一例手足裂畸形胎儿。我们利用全外显子组测序和桑格测序筛选出候选基因突变位点,并为家庭成员提供植入前基因检测(PGT)。基因检测结果显示,胎儿的 WNT10B 存在一个 c.786G>A(p.Trp262*)的同基因突变,父母均为杂合突变携带者。PGT 结果显示,在两个囊胚中,一个是杂合突变体,另一个是同源突变体。所有胚胎都有二倍体染色体。杂合子胚胎移植后,成功实现了单胎妊娠。这项研究表明,WNT10B 的同源突变可能是导致该家族出现手足裂的原因。对于单基因遗传病家族,只有在确定致病突变后,植入前基因检测才能有效防止患儿的出生。
{"title":"Identification of a pathogenic variant and pre-implantation genetic testing for a Chinese family affected with split-hand/foot malformation.","authors":"Li-Bin Mei, Yi-Yuan Zhang, Xian-Jing Huang, Hong Ji, Ping-Ping Qiu, Lu Ding, Xuemei He, Ping Li","doi":"10.16288/j.yczz.24-141","DOIUrl":"https://doi.org/10.16288/j.yczz.24-141","url":null,"abstract":"<p><p>Split-hand/foot malformation is a serious congenital limb malformation characterized by syndactyly and underdevelopment of the phalanges and metatarsals. In this study, we reported a case of a fetus with hand-foot cleft deformity. Whole exome and Sanger sequencing were used to filter out candidate gene mutation sites and provide pre-implantation genetic testing(PGT) for family members. Genetic testing results showed that there was a homozygous mutation c.786G>A (p.Trp262*) in the fetal <i>WNT10B</i>, and both parents were carriers of heterozygous mutations. PGT results showed that out of the two blastocysts, one was a heterozygous mutant and the other was a homozygous mutant. All the embryos had diploid chromosomes. The heterozygous embryo was transferred, and a singleton pregnancy was successfully achieved. This study suggests that homozygous mutations in <i>WNT10B</i> are the likely cause of hand-foot clefts in this family. For families with monogenic diseases, preimplantation genetic testing can effectively prevent the birth of an affected child only after identifying the pathogenic mutation.</p>","PeriodicalId":35536,"journal":{"name":"Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji","volume":"46 9","pages":"750-756"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142297202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress on deep learning in genomics. 基因组学深度学习的进展。
Q3 Medicine Pub Date : 2024-09-01 DOI: 10.16288/j.yczz.24-151
Yan-Chun Bao, Cai-Xia Shi, Chuan-Qiang Zhang, Ming-Juan Gu, Lin Zhu, Zai-Xia Liu, Le Zhou, Feng-Ying Ma, Ri-Su Na, Wen-Guang Zhang

With the rapid growth of data driven by high-throughput sequencing technologies, genomics has entered an era characterized by big data, which presents significant challenges for traditional bioinformatics methods in handling complex data patterns. At this critical juncture of technological progress, deep learning-an advanced artificial intelligence technology-offers powerful capabilities for data analysis and pattern recognition, revitalizing genomic research. In this review, we focus on four major deep learning models: Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), Long Short-Term Memory(LSTM), and Generative Adversarial Network(GAN). We outline their core principles and provide a comprehensive review of their applications in DNA, RNA, and protein research over the past five years. Additionally, we also explore the use of deep learning in livestock genomics, highlighting its potential benefits and challenges in genetic trait analysis, disease prevention, and genetic enhancement. By delivering a thorough analysis, we aim to enhance precision and efficiency in genomic research through deep learning and offer a framework for developing and applying livestock genomic strategies, thereby advancing precision livestock farming and genetic breeding technologies.

随着高通量测序技术推动数据的快速增长,基因组学进入了一个以大数据为特征的时代,这给传统生物信息学方法处理复杂数据模式带来了巨大挑战。在这一技术进步的关键时刻,深度学习--一种先进的人工智能技术--为数据分析和模式识别提供了强大的能力,为基因组学研究注入了新的活力。在本综述中,我们将重点介绍四种主要的深度学习模型:卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆(LSTM)和生成对抗网络(GAN)。我们概述了它们的核心原理,并全面回顾了过去五年它们在 DNA、RNA 和蛋白质研究中的应用。此外,我们还探讨了深度学习在家畜基因组学中的应用,强调了其在遗传性状分析、疾病预防和基因强化方面的潜在优势和挑战。通过深入分析,我们旨在通过深度学习提高基因组研究的精度和效率,并为开发和应用家畜基因组策略提供一个框架,从而推动精准家畜养殖和遗传育种技术的发展。
{"title":"Progress on deep learning in genomics.","authors":"Yan-Chun Bao, Cai-Xia Shi, Chuan-Qiang Zhang, Ming-Juan Gu, Lin Zhu, Zai-Xia Liu, Le Zhou, Feng-Ying Ma, Ri-Su Na, Wen-Guang Zhang","doi":"10.16288/j.yczz.24-151","DOIUrl":"https://doi.org/10.16288/j.yczz.24-151","url":null,"abstract":"<p><p>With the rapid growth of data driven by high-throughput sequencing technologies, genomics has entered an era characterized by big data, which presents significant challenges for traditional bioinformatics methods in handling complex data patterns. At this critical juncture of technological progress, deep learning-an advanced artificial intelligence technology-offers powerful capabilities for data analysis and pattern recognition, revitalizing genomic research. In this review, we focus on four major deep learning models: Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), Long Short-Term Memory(LSTM), and Generative Adversarial Network(GAN). We outline their core principles and provide a comprehensive review of their applications in DNA, RNA, and protein research over the past five years. Additionally, we also explore the use of deep learning in livestock genomics, highlighting its potential benefits and challenges in genetic trait analysis, disease prevention, and genetic enhancement. By delivering a thorough analysis, we aim to enhance precision and efficiency in genomic research through deep learning and offer a framework for developing and applying livestock genomic strategies, thereby advancing precision livestock farming and genetic breeding technologies.</p>","PeriodicalId":35536,"journal":{"name":"Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji","volume":"46 9","pages":"701-715"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142297205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of SvAPETALA1-5 gene on floral organ development in Senecio vulgaris. SvAPETALA1-5 基因对庸俗番泻叶花器官发育的影响
Q3 Medicine Pub Date : 2024-09-01 DOI: 10.16288/j.yczz.24-147
Yu-Na Zhang, Yan-Min Hao, Min-Long Cui, Chun-Lan Piao

Asteraceae is a large class of eudicots with complex capitulum, and little is known regarding the molecular regulation mechanism of flower development. APETALA1(AP1) belongs to the MADS-box gene family and plays a key role in plant floral induction and floral organ development. In this study, the bioinformatics and tissue-specific expression of AP1 homologous gene SvAP1-5 in Senecio vulgaris were analyzed. Based on VIGS technology, SvAP1-5 gene silencing plants were created, and SvAP1-5 was overexpressed in Solanum nigrum. The results of bioinformatics analysis showed that SvAP1-5 gene had typical MADS-box and K-box structure, and contains FUL motif and paleoAP1 motif at the C-terminal. SvAP1-5 belongs to the euFUL branch of AP1 gene. qRT-PCR results showed that SvAP1-5 was expressed in bracts, petals and carpels, and was highly expressed in carpels. Compared with the control group, SvAP1-5 gene silencing resulted in irregular petal dehiscence, increased stigma division, and carpel dysplasia. The fruit development of SvAP1-5 overexpressing S.nigrum plants was abnormal, and the hyperplastic tissue similar to fruit appeared. In summary, SvAP1-5 gene may be involved in the development of petals and carpels and plays an important role during the development of S.vulgaris.

菊科(Asteraceae)是一种头状花序复杂的大型裸子植物,人们对其花发育的分子调控机制知之甚少。APETALA1(AP1)属于MADS-box基因家族,在植物花诱导和花器官发育中起着关键作用。本研究分析了AP1同源基因SvAP1-5的生物信息学和组织特异性表达。基于 VIGS 技术,创建了 SvAP1-5 基因沉默植株,并在黑茄属植物中过表达 SvAP1-5。生物信息学分析结果表明,SvAP1-5基因具有典型的MADS-box和K-box结构,C端含有FUL基序和paleoAP1基序。qRT-PCR 结果显示,SvAP1-5 在苞片、花瓣和心皮中均有表达,且在心皮中高表达。与对照组相比,沉默 SvAP1-5 基因会导致花瓣不规则开裂、柱头分裂增加和心皮发育不良。过表达 SvAP1-5 的黑奴果实发育异常,出现类似果实的增生组织。综上所述,SvAP1-5 基因可能参与了花瓣和心皮的发育,并在西番莲的发育过程中发挥了重要作用。
{"title":"Effects of <i>SvAPETALA1-5</i> gene on floral organ development in <i>Senecio vulgaris</i>.","authors":"Yu-Na Zhang, Yan-Min Hao, Min-Long Cui, Chun-Lan Piao","doi":"10.16288/j.yczz.24-147","DOIUrl":"10.16288/j.yczz.24-147","url":null,"abstract":"<p><p>Asteraceae is a large class of eudicots with complex capitulum, and little is known regarding the molecular regulation mechanism of flower development. <i>APETALA1</i>(<i>AP1</i>) belongs to the MADS-box gene family and plays a key role in plant floral induction and floral organ development. In this study, the bioinformatics and tissue-specific expression of <i>AP1</i> homologous gene <i>SvAP1-5</i> in <i>Senecio vulgaris</i> were analyzed. Based on VIGS technology, <i>SvAP1-5</i> gene silencing plants were created, and <i>SvAP1-5</i> was overexpressed in <i>Solanum nigrum</i>. The results of bioinformatics analysis showed that <i>SvAP1-5</i> gene had typical MADS-box and K-box structure, and contains FUL motif and paleoAP1 motif at the C-terminal. <i>SvAP1-5</i> belongs to the euFUL branch of <i>AP1</i> gene. qRT-PCR results showed that <i>SvAP1-5</i> was expressed in bracts, petals and carpels, and was highly expressed in carpels. Compared with the control group, <i>SvAP1-5</i> gene silencing resulted in irregular petal dehiscence, increased stigma division, and carpel dysplasia. The fruit development of <i>SvAP1-5</i> overexpressing <i>S.nigrum</i> plants was abnormal, and the hyperplastic tissue similar to fruit appeared. In summary, <i>SvAP1-5</i> gene may be involved in the development of petals and carpels and plays an important role during the development of <i>S.vulgaris</i>.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"46 9","pages":"727-736"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142297200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 生态学报 Acta Agronomica Sinica 畜牧与饲料科学 中国农学通报 CCV 中国畜牧杂志 生态学杂志 Chinese Journal of Eco-agriculture 中国比较医学杂志 中国畜牧兽医 中国水稻科学 中国烟草科学 农药学学报 棉花学报 Crop research 中国食用菌 福建稻麦科技 福建农业学报 广东农业科学 湖北农业科学 Journal of Agriculture 农业资源与环境学报 北京农学院学报 中国农业大学学报 水产学报 中国水产科学 果树学报 南京农业大学学报 核农学报 植物遗传资源学报 Journal of Plant Resources and Environment Journal of Plant Protection 山西农业科学 沈阳农业大学学报 南方农业学报 现代农药 Modern Agricultural Science and Technology 动物医学进展 西南农业学报 Tobacco Science & Technology Oil Crop Science 遗传 Aquaculture and Fisheries 中国农业气象 湖泊科学 中国农业科学 Journal of Agricultural Sciences aBIOTECH Journal of Resources and Ecology Information Processing in Agriculture 美国植物学期刊(英文) 土壤科学期刊(英文) 园艺研究(英文) 耕作与栽培 湖北农学院学报 昆虫学(英文) 海洋渔业 J Immune Based Ther Vaccines Antimicrob 海岸生命医学杂志(英文版) Life Res (Auckl) 兽医学(英文) Anim. Nutr. Plant Diseases and Pests(植物病虫害研究:英文版) 动物科学期刊(英文) 农业科学 Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 水产研究 湿地科学 湖南农业大学学报(自然科学版) 亚洲兽医病例研究 农业化学和环境(英文) 生态科学 土壤科学 经济动物学报 福建畜牧兽医
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1