首页 > 最新文献

Chinese Journal of Eco-agriculture最新文献

英文 中文
大豆光敏色素生色团合成基因GmHY2的克隆及功能分析 大豆光敏色素生色团合成基因GmHY2的克隆及功能分析
Q3 Agricultural and Biological Sciences Pub Date : 2023-01-01 DOI: 10.27536/d.cnki.gccdy.2023.000007
张芷睿
{"title":"大豆光敏色素生色团合成基因GmHY2的克隆及功能分析","authors":"张芷睿","doi":"10.27536/d.cnki.gccdy.2023.000007","DOIUrl":"https://doi.org/10.27536/d.cnki.gccdy.2023.000007","url":null,"abstract":"","PeriodicalId":10032,"journal":{"name":"Chinese Journal of Eco-agriculture","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142028276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
生物炭对土壤中重金属铜、土霉素复合污染的影响研究 生物炭对土壤中重金属铜、土霉素复合污染的影响研究
Q3 Agricultural and Biological Sciences Pub Date : 2023-01-01 DOI: 10.27536/d.cnki.gccdy.2023.000009
崔政武
{"title":"生物炭对土壤中重金属铜、土霉素复合污染的影响研究","authors":"崔政武","doi":"10.27536/d.cnki.gccdy.2023.000009","DOIUrl":"https://doi.org/10.27536/d.cnki.gccdy.2023.000009","url":null,"abstract":"","PeriodicalId":10032,"journal":{"name":"Chinese Journal of Eco-agriculture","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142028047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
基于压力-状态-响应模型的寒地粳稻杂交育种后代选择与实现 Selection and implementation of offspring in cold region japonica rice hybrid breeding based on pressure state response model
Q3 Agricultural and Biological Sciences Pub Date : 2021-04-01 DOI: 10.13930/J.CNKI.CJEA.200776
刘宝海, Li Baohai, 聂守军, Nie Shoujun, 高世伟, Gao Shiwei, 刘晴, Liu Qing, 刘宇强, Liu Yuqiang, 常汇琳, Chang Huilin, 马成, M. Cheng, 唐铭, Tang Ming, 薛英会, Xu Yinghui, 白瑞, Bai Rui
为提高育种杂交后代选择效果,引入压力-状态-响应(PSR)模型对影响寒地粳稻杂交育种后代的遗传、环境和选择因素进行探讨。构建1个目标、3个准则和18个指标组成的寒地粳稻杂交育种后代选择概念模型与评价体系,并采用客观熵权和功效评分相组合方法进行综合指数评价。结果表明:在PSR模型设计环境下,‘绥粳18’杂交育种9个世代杂交后代均表现出穗颈瘟权重值最大,其次是倒伏级别,再次是空壳率,寒地生态环境下抗穗颈瘟发病指数、抗倒伏级别和空壳率水平是水稻育种杂交后代选择最重要的考虑指标。PSR系统评价中,各子系统的影响力大小依次是响应子系统(权重为0.6867)>状态子系统(权重为0.2651)>压力子系统(权重为0.0482);各指标值变异系数为0~200.4%,大范围变异利于提高后代选择育种效果。与目前多依据株型理论选择杂交后代系谱相比,运用PSR模型理论与评价体系方法,创建动态压力选择环境,客观评价指标特征,并引入专家决策管理,能够有效克服单纯依靠育种经验、定性定量不结合、多注重性状选择以及响应决策不系统而导致多优性状聚合难、鉴定难、选择效率低等问题,具有较好可行性、可靠性和实用性,可以获得更加合理的寒地水稻育种杂交后代选择方案。本研究结果可为加快寒地优质高产多抗广适突破性水稻新品种选育提供有益参考和技术依据。
To improve the selection effect of hybrid offspring in breeding, a pressure state response (PSR) model was introduced to explore the genetic, environmental, and selection factors that affect the offspring of cold region japonica rice hybrid breeding. Construct a conceptual model and evaluation system for offspring selection in cold region japonica hybrid rice breeding, consisting of 1 objective, 3 criteria, and 18 indicators, and use a combination of objective entropy weight and efficacy score method for comprehensive index evaluation. The results showed that under the PSR model design environment, all 9 generations of hybrid offspring of 'Suijing 18' showed the highest weight value of ear neck blast, followed by lodging level and empty shell rate. The index of resistance to ear neck blast, lodging level, and empty shell rate in cold ecological environment are the most important consideration indicators for selecting hybrid offspring in rice breeding. In the evaluation of the PSR system, the order of influence of each subsystem is the response subsystem (with a weight of 0.6867), the state subsystem (with a weight of 0.2651), and the pressure subsystem (with a weight of 0.0482); The coefficient of variation of each indicator value is 0~20.4%, and a wide range of variation is beneficial for improving the breeding effect of offspring selection. Compared with the current selection of hybrid offspring genealogy based on plant type theory, using PSR model theory and evaluation system methods to create a dynamic pressure selection environment, objectively evaluate indicator characteristics, and introduce expert decision-making management can effectively overcome the problems of relying solely on breeding experience, not combining qualitative and quantitative analysis, paying more attention to trait selection, and responding to decision-making not systematically, resulting in difficult aggregation, identification, and low selection efficiency of multiple excellent traits, It has good feasibility, reliability, and practicality, and can obtain a more reasonable selection plan for hybrid offspring in cold region rice breeding. The results of this study can provide useful reference and technical basis for accelerating the breeding of breakthrough rice varieties with high quality, high yield, multi resistance, and wide adaptability in cold regions.
{"title":"基于压力-状态-响应模型的寒地粳稻杂交育种后代选择与实现","authors":"刘宝海, Li Baohai, 聂守军, Nie Shoujun, 高世伟, Gao Shiwei, 刘晴, Liu Qing, 刘宇强, Liu Yuqiang, 常汇琳, Chang Huilin, 马成, M. Cheng, 唐铭, Tang Ming, 薛英会, Xu Yinghui, 白瑞, Bai Rui","doi":"10.13930/J.CNKI.CJEA.200776","DOIUrl":"https://doi.org/10.13930/J.CNKI.CJEA.200776","url":null,"abstract":"为提高育种杂交后代选择效果,引入压力-状态-响应(PSR)模型对影响寒地粳稻杂交育种后代的遗传、环境和选择因素进行探讨。构建1个目标、3个准则和18个指标组成的寒地粳稻杂交育种后代选择概念模型与评价体系,并采用客观熵权和功效评分相组合方法进行综合指数评价。结果表明:在PSR模型设计环境下,‘绥粳18’杂交育种9个世代杂交后代均表现出穗颈瘟权重值最大,其次是倒伏级别,再次是空壳率,寒地生态环境下抗穗颈瘟发病指数、抗倒伏级别和空壳率水平是水稻育种杂交后代选择最重要的考虑指标。PSR系统评价中,各子系统的影响力大小依次是响应子系统(权重为0.6867)>状态子系统(权重为0.2651)>压力子系统(权重为0.0482);各指标值变异系数为0~200.4%,大范围变异利于提高后代选择育种效果。与目前多依据株型理论选择杂交后代系谱相比,运用PSR模型理论与评价体系方法,创建动态压力选择环境,客观评价指标特征,并引入专家决策管理,能够有效克服单纯依靠育种经验、定性定量不结合、多注重性状选择以及响应决策不系统而导致多优性状聚合难、鉴定难、选择效率低等问题,具有较好可行性、可靠性和实用性,可以获得更加合理的寒地水稻育种杂交后代选择方案。本研究结果可为加快寒地优质高产多抗广适突破性水稻新品种选育提供有益参考和技术依据。","PeriodicalId":10032,"journal":{"name":"Chinese Journal of Eco-agriculture","volume":"29 1","pages":"738-750"},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44170415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
垄作稻-鱼-鸡共生对水稻茎秆倒伏、穗部性状及产量的影响 垄作稻-鱼-鸡共生对水稻茎秆倒伏、穗部性状及产量的影响
Q3 Agricultural and Biological Sciences Pub Date : 2021-02-01 DOI: 10.13930/J.CNKI.CJEA.200438
梁玉刚, Li Yugang, 陈奕沙, Chen Yisha, 陈璐, Chen Lu, 马微微, Mao Weiwei, 孟祥杰, Meng Xiangjie, 黄璜, Huang Huang, 余政军, YU Zheng-jun
为了探究水稻垄作栽培和稻-鱼-鸡共生模式的结合对水稻茎秆倒伏、穗部性状及产量的影响,本文通过设计常规水稻垄作栽培(CK)、水稻垄作养鱼(RF)、水稻垄作养鸡(RC)和水稻垄作养鸡养鱼(RFC)的田间对比试验,研究垄作稻-鱼-鸡共生模式下水稻茎秆倒伏、穗部性状和实际产量的变化。结果表明:2年中4个处理的水稻株高、株鲜重、重心高度和节间长的均值整体无显著性差异。与CK处理相比,RFC和RC处理水稻茎秆节间外径、节间壁厚、穗长和穗鲜重虽呈增加趋势,但均值整体也无显著性差异;水稻产量也保持稳定。RF处理水稻茎秆节间外径、壁厚、穗长和穗鲜重均呈降低趋势,且2019年穗鲜重达显著降低(P < 0.05);水稻产量2年平均降低为29.98%(P < 0.05),其余均值整体无显著性差异。2年中RFC和RC较CK处理水稻节间茎秆抗折力平均增加19.69%和8.10%,且2年中RFC的第4和第5节间茎秆抗折力显著增加(P < 0.05);而RF处理茎秆抗弯截面模量和抗折力整体均呈降低趋势,但均值整体变化不显著。RFC和RC较CK处理水稻茎秆节间最大应力均值降低为17.85%和15.08%,倒伏指数均值降低为4.35%和4.26%,但未达显著水平;RF处理茎秆节间倒伏指数平均增加11.47%,且2018年第3和2019年第2~5节间均达显著性差异(P < 0.05)。综上所述,垄作稻-鱼-鸡共生和垄作稻-鸡共生模式能够提高水稻穗长和穗鲜重,稳定水稻产量,增加水稻茎秆节间外径和壁厚,提高茎秆抗折力和抗弯截面模量,降低茎秆最大应力和倒伏指数,从而具有一定的壮秆效应和抗倒伏能力。
In order to explore the effects of the combination of rice ridge cultivation and rice fish chicken symbiotic mode on rice stem lodging, ear traits, and yield, this study conducted field comparative experiments on conventional rice ridge cultivation (CK), rice ridge fish farming (RF), rice ridge chicken farming (RC), and rice ridge chicken fish farming (RFC) to study the changes in rice stem lodging, ear traits, and actual yield under the rice fish chicken symbiotic mode. The results showed that there was no significant overall difference in the mean values of rice plant height, fresh weight, center of gravity height, and internode length among the four treatments over the course of two years. Compared with CK treatment, RFC and RC treatment showed an increasing trend in the internode outer diameter, internode wall thickness, spike length, and fresh weight of rice stems, but there was no significant difference in the overall mean; The rice yield has also remained stable. The outer diameter, wall thickness, panicle length, and fresh weight of rice stem internodes under RF treatment showed a decreasing trend, and the fresh weight of panicles significantly decreased in 2019 (P<0.05); The average decrease in rice yield over the past two years was 29.98% (P<0.05), and there was no significant difference in the other mean values as a whole. Over the course of 2 years, the average increase in internode stem bending resistance of rice treated with RFC and RC compared to CK was 19.69% and 8.10%, and the 4th and 5th internode stem bending resistance of RFC significantly increased (P<0.05); However, the bending section modulus and bending strength of the stems treated with RF showed a decreasing trend overall, but the overall change in mean was not significant. Compared with CK treatment, RFC and RC treatments reduced the average maximum stress between rice stem nodes by 17.85% and 15.08%, while the average lodging index decreased by 4.35% and 4.26%, but did not reach a significant level; The lodging index of stem internodes under RF treatment increased by an average of 11.47%, and significant differences were observed between the 3rd and 2nd to 5th internodes in 2018 and 2019 (P<0.05). In summary, the ridge farming rice fish chicken symbiosis and ridge farming rice chicken symbiosis models can improve the length and fresh weight of rice panicles, stabilize rice yield, increase the outer diameter and wall thickness of rice stem internodes, improve stem bending resistance and bending section modulus, reduce the maximum stress and lodging index of the stem, and thus have a certain stem strengthening effect and lodging resistance.
{"title":"垄作稻-鱼-鸡共生对水稻茎秆倒伏、穗部性状及产量的影响","authors":"梁玉刚, Li Yugang, 陈奕沙, Chen Yisha, 陈璐, Chen Lu, 马微微, Mao Weiwei, 孟祥杰, Meng Xiangjie, 黄璜, Huang Huang, 余政军, YU Zheng-jun","doi":"10.13930/J.CNKI.CJEA.200438","DOIUrl":"https://doi.org/10.13930/J.CNKI.CJEA.200438","url":null,"abstract":"为了探究水稻垄作栽培和稻-鱼-鸡共生模式的结合对水稻茎秆倒伏、穗部性状及产量的影响,本文通过设计常规水稻垄作栽培(CK)、水稻垄作养鱼(RF)、水稻垄作养鸡(RC)和水稻垄作养鸡养鱼(RFC)的田间对比试验,研究垄作稻-鱼-鸡共生模式下水稻茎秆倒伏、穗部性状和实际产量的变化。结果表明:2年中4个处理的水稻株高、株鲜重、重心高度和节间长的均值整体无显著性差异。与CK处理相比,RFC和RC处理水稻茎秆节间外径、节间壁厚、穗长和穗鲜重虽呈增加趋势,但均值整体也无显著性差异;水稻产量也保持稳定。RF处理水稻茎秆节间外径、壁厚、穗长和穗鲜重均呈降低趋势,且2019年穗鲜重达显著降低(P < 0.05);水稻产量2年平均降低为29.98%(P < 0.05),其余均值整体无显著性差异。2年中RFC和RC较CK处理水稻节间茎秆抗折力平均增加19.69%和8.10%,且2年中RFC的第4和第5节间茎秆抗折力显著增加(P < 0.05);而RF处理茎秆抗弯截面模量和抗折力整体均呈降低趋势,但均值整体变化不显著。RFC和RC较CK处理水稻茎秆节间最大应力均值降低为17.85%和15.08%,倒伏指数均值降低为4.35%和4.26%,但未达显著水平;RF处理茎秆节间倒伏指数平均增加11.47%,且2018年第3和2019年第2~5节间均达显著性差异(P < 0.05)。综上所述,垄作稻-鱼-鸡共生和垄作稻-鸡共生模式能够提高水稻穗长和穗鲜重,稳定水稻产量,增加水稻茎秆节间外径和壁厚,提高茎秆抗折力和抗弯截面模量,降低茎秆最大应力和倒伏指数,从而具有一定的壮秆效应和抗倒伏能力。","PeriodicalId":10032,"journal":{"name":"Chinese Journal of Eco-agriculture","volume":"29 1","pages":"379-388"},"PeriodicalIF":0.0,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45073827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial variation in major water quality types and its relationships with land cover in the middle and lower reaches of Aral Sea Basin 咸海盆地中下游主要水质类型空间分异及其与土地覆被的关系
Q3 Agricultural and Biological Sciences Pub Date : 2021-01-01 DOI: 10.13930/J.CNKI.CJEA.200429
Y. Zhang, X. Tan, F. Li, H. Ruan, J. Yu, Y. Gao, X. Zhai
Water resources and environmental issues in the Aral Sea Basin of Central Asia are global concerns. In this study, the water quality variables (i.e., basic physical and chemical attributes, different forms of nutrients, other elements, cations, and anions) from 21 sampling sites in the middle and lower reaches of Aral Sea Basin were measured in 2019 to explore water environmental variations and their causes. Spatial variation in 20 water quality variables was investigated, and the representative water quality types, spatial differences, and their causes were identified via multivariate analysis methods (i.e., principal component analysis and cluster analysis). Furthermore, the effects of land cover on the spatial variation in water quality types were explored. The results showed that: 1) the values of electronic conductivity (EC) and total dissolved solids (TDS) increased from the middle to the lower reaches, and the highest values were in the Aral Sea. This indicates that the concentrations of anions and cations increased from the middle to the lower reaches. For the nutrient variables, high phosphorous concentrations were in the middle reaches of Amu Darya, and high nitrate-nitrogen concentrations were in the Syr Darya. For the different forms of carbon, the highest concentrations were in the Amu Darya, particularly in the delta area of lower reaches. 2) The water quality at all sampling sites can be divided into three water quality types according to the similarity classification of water quality variables. The first type had low concentrations for most water quality variables, which were distributed in the middle reaches of Syr Darya and the Aral Sea. The second type had high concentrations of different forms of nitrogen and phosphorus, which were distributed in the middle and lower reaches of Amu Darya. The third type had high concentrations of carbon, anions, and cations, which were distributed in the Aral Sea. The water quality concentrations of the first and second types were mainly due to rock weathering processes on bare land, and the anions and cations were mainly derived from the weathering of silicates and evaporites. The concentrations of the third type were mainly due to the evaporation and crystallization processes of a dry climate, and the anions and cations were mainly derived from the weathering of silicates and evaporites, which may also be affected by carbonate weathering. 3) With an increase in the buffer zone radius for each sampling point (0.5 km to 10 km), the significant land cover changed from bare land to water, shrubland, grassland, mixed farmland, and vegetation for the first water quality type; the most significant land cover was water. There were no significant relationships between the second water quality type and land cover. For the third water quality type, the significant land cover changed from water to water, mixed farmland, and vegetation - the most significant land cover was water. Therefore, spatial varia
中亚咸海盆地的水资源和环境问题是全球关注的问题。本研究对2019年咸海盆地中下游21个采样点的水质变量(即基本理化属性、不同形式的营养物质、其他元素、阳离子和阴离子)进行了测量,探讨了水环境的变化及其原因。研究了20个水质变量的空间变异,通过主成分分析和聚类分析等多变量分析方法,确定了具有代表性的水质类型、空间差异及其成因。此外,还探讨了土地覆被对水质类型空间变化的影响。结果表明:1)电子电导率(EC)和总溶解固形物(TDS)由中下游逐渐增大,以咸海最高;这说明阴离子和阳离子的浓度由中游向下游递增。在养分变量上,阿姆河中游磷含量较高,锡尔河中游硝态氮含量较高。对于不同形式的碳,阿姆河的浓度最高,特别是在下游的三角洲地区。2)根据水质变量的相似性分类,将各采样点的水质分为三种水质类型。第一类水质变量浓度低,主要分布在锡尔河中游和咸海。第二类土壤中氮、磷含量较高,分布在阿姆河中下游。第三种类型碳、阴离子和阳离子浓度较高,分布在咸海。第一类和第二类水质浓度主要来源于裸地岩石风化作用,阴离子和阳离子主要来源于硅酸盐和蒸发岩的风化作用。第三类主要受干燥气候的蒸发结晶作用的影响,阴离子和阳离子主要来源于硅酸盐和蒸发岩的风化作用,也可能受碳酸盐风化作用的影响。3)随着各采样点缓冲区半径的增大(0.5 km ~ 10 km),第一类水质类型的显著土地覆被由裸地变为水域、灌丛、草地、混交田和植被;最重要的土地覆盖是水。第二类水质类型与土地覆被之间无显著相关。第三种水质类型的显著土地覆被由水变为水、混合农田和植被,其中最显著的土地覆被是水。因此,水质变量的空间变化主要受局地气候条件(即气候干旱和集约蒸散)和大陆覆被类型(即裸地、水域、农田、草地和城市)的影响。为了改善咸海盆地中下游的水环境条件,应增加径流以补充咸海,并减弱咸海下游的蒸发和结晶过程。河岸地带的植被恢复和退耕还林还草也应加强,特别是在阿姆河、锡尔河和咸海的中下游。
{"title":"Spatial variation in major water quality types and its relationships with land cover in the middle and lower reaches of Aral Sea Basin","authors":"Y. Zhang, X. Tan, F. Li, H. Ruan, J. Yu, Y. Gao, X. Zhai","doi":"10.13930/J.CNKI.CJEA.200429","DOIUrl":"https://doi.org/10.13930/J.CNKI.CJEA.200429","url":null,"abstract":"Water resources and environmental issues in the Aral Sea Basin of Central Asia are global concerns. In this study, the water quality variables (i.e., basic physical and chemical attributes, different forms of nutrients, other elements, cations, and anions) from 21 sampling sites in the middle and lower reaches of Aral Sea Basin were measured in 2019 to explore water environmental variations and their causes. Spatial variation in 20 water quality variables was investigated, and the representative water quality types, spatial differences, and their causes were identified via multivariate analysis methods (i.e., principal component analysis and cluster analysis). Furthermore, the effects of land cover on the spatial variation in water quality types were explored. The results showed that: 1) the values of electronic conductivity (EC) and total dissolved solids (TDS) increased from the middle to the lower reaches, and the highest values were in the Aral Sea. This indicates that the concentrations of anions and cations increased from the middle to the lower reaches. For the nutrient variables, high phosphorous concentrations were in the middle reaches of Amu Darya, and high nitrate-nitrogen concentrations were in the Syr Darya. For the different forms of carbon, the highest concentrations were in the Amu Darya, particularly in the delta area of lower reaches. 2) The water quality at all sampling sites can be divided into three water quality types according to the similarity classification of water quality variables. The first type had low concentrations for most water quality variables, which were distributed in the middle reaches of Syr Darya and the Aral Sea. The second type had high concentrations of different forms of nitrogen and phosphorus, which were distributed in the middle and lower reaches of Amu Darya. The third type had high concentrations of carbon, anions, and cations, which were distributed in the Aral Sea. The water quality concentrations of the first and second types were mainly due to rock weathering processes on bare land, and the anions and cations were mainly derived from the weathering of silicates and evaporites. The concentrations of the third type were mainly due to the evaporation and crystallization processes of a dry climate, and the anions and cations were mainly derived from the weathering of silicates and evaporites, which may also be affected by carbonate weathering. 3) With an increase in the buffer zone radius for each sampling point (0.5 km to 10 km), the significant land cover changed from bare land to water, shrubland, grassland, mixed farmland, and vegetation for the first water quality type; the most significant land cover was water. There were no significant relationships between the second water quality type and land cover. For the third water quality type, the significant land cover changed from water to water, mixed farmland, and vegetation - the most significant land cover was water. Therefore, spatial varia","PeriodicalId":10032,"journal":{"name":"Chinese Journal of Eco-agriculture","volume":"29 1","pages":"299-311"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66581673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corn disease recognition based on the Convolutional Neural Network with a small sampling size 基于小样本量卷积神经网络的玉米病害识别
Q3 Agricultural and Biological Sciences Pub Date : 2020-05-20 DOI: 10.13930/J.CNKI.CJEA.200375
Ming-tao Yang, Yao Zhang, Tao Liu
Crop disease management influences yield and quality, yet identifying corn diseases is still difficult. High labor costs, small number of sample, and uneven disease distributions contribute to the difficulty. We propose an improved Convolutional Neural Network (CNN) model based on the transfer learning method for disease identification. The sample image set was enhanced by rotation and roll-over, then the migrated MobileNetV2 model was used to train the image data set for corn diseases. The Focal Loss function was used to improve the neural network loss function, and the Softmax classification method was used for corn disease image recognition. The training set accuracy, validation set accuracy, weight, run time, and the number of parameter in six models were experimentally compared. The verification set accuracy rates were 93.88% (AlexNet), 95.48% (GoogleNet), 91.69% (Vgg16), 97.67% (RestNet34), 96.21% (MobileNetV2), and 97.23% (migrated MobileNetV2). The migrated MobileNetV2 was 97.23% accurate and weighed 8.69 MB. Confounding the MobileNetV2 model improved the recognition accuracy by 1.02% and reduced the training speed by 6 350 seconds compared to the unconfounded model. The migrated MobileNetV2 model had the best corn disease recognition ability with a small sampling size; improved convergence speed, reduced model calculations, and greatly improved the recognition time.
作物病害管理影响产量和质量,但识别玉米病害仍然很困难。劳动力成本高、样本数量少、疾病分布不均是造成这一困难的原因。我们提出了一种基于迁移学习方法的改进卷积神经网络(CNN)模型,用于疾病识别。通过旋转和翻转来增强样本图像集,然后使用迁移的MobileNetV2模型来训练玉米病害的图像数据集。将Focal Loss函数用于改进神经网络损失函数,并将Softmax分类方法用于玉米病害图像识别。实验比较了六个模型的训练集精度、验证集精度、权重、运行时间和参数数量。验证集准确率分别为93.88%(AlexNet)、95.48%(GoogleNet)、91.69%(Vgg16)、97.67%(RestNet34)、96.21%(MobileNetV2)和97.23%(迁移的MobileNetV2)。迁移后的MobileNetV2的准确率为97.23%,重量为8.69 MB。混淆MobileNetV2模型使识别准确率提高了1.02%,训练速度降低了6350 秒。迁移后的MobileNetV2模型在较小的样本量下具有最好的玉米病害识别能力;提高了收敛速度,减少了模型计算,大大提高了识别时间。
{"title":"Corn disease recognition based on the Convolutional Neural Network with a small sampling size","authors":"Ming-tao Yang, Yao Zhang, Tao Liu","doi":"10.13930/J.CNKI.CJEA.200375","DOIUrl":"https://doi.org/10.13930/J.CNKI.CJEA.200375","url":null,"abstract":"Crop disease management influences yield and quality, yet identifying corn diseases is still difficult. High labor costs, small number of sample, and uneven disease distributions contribute to the difficulty. We propose an improved Convolutional Neural Network (CNN) model based on the transfer learning method for disease identification. The sample image set was enhanced by rotation and roll-over, then the migrated MobileNetV2 model was used to train the image data set for corn diseases. The Focal Loss function was used to improve the neural network loss function, and the Softmax classification method was used for corn disease image recognition. The training set accuracy, validation set accuracy, weight, run time, and the number of parameter in six models were experimentally compared. The verification set accuracy rates were 93.88% (AlexNet), 95.48% (GoogleNet), 91.69% (Vgg16), 97.67% (RestNet34), 96.21% (MobileNetV2), and 97.23% (migrated MobileNetV2). The migrated MobileNetV2 was 97.23% accurate and weighed 8.69 MB. Confounding the MobileNetV2 model improved the recognition accuracy by 1.02% and reduced the training speed by 6 350 seconds compared to the unconfounded model. The migrated MobileNetV2 model had the best corn disease recognition ability with a small sampling size; improved convergence speed, reduced model calculations, and greatly improved the recognition time.","PeriodicalId":10032,"journal":{"name":"Chinese Journal of Eco-agriculture","volume":"28 1","pages":"1924-1931"},"PeriodicalIF":0.0,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42414967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
基于CA-Markov的土地利用时空变化与生境质量预测——以宁夏中部干旱区为例 基于CA-Markov的土地利用时空变化与生境质量预测——以宁夏中部干旱区为例
Q3 Agricultural and Biological Sciences Pub Date : 2020-01-01 DOI: 10.13930/J.CNKI.CJEA.200221
武丹, 李欢, 艾宁, 黄涛, 顾继升
{"title":"基于CA-Markov的土地利用时空变化与生境质量预测——以宁夏中部干旱区为例","authors":"武丹, 李欢, 艾宁, 黄涛, 顾继升","doi":"10.13930/J.CNKI.CJEA.200221","DOIUrl":"https://doi.org/10.13930/J.CNKI.CJEA.200221","url":null,"abstract":"","PeriodicalId":10032,"journal":{"name":"Chinese Journal of Eco-agriculture","volume":"28 1","pages":"1969-1978"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66581636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
耕层土层交换对土壤氮素关键转化过程和玉米氮素利用的影响 耕层土层交换对土壤氮素关键转化过程和玉米氮素利用的影响
Q3 Agricultural and Biological Sciences Pub Date : 2019-10-14 DOI: 10.13930/j.cnki.cjea.190265
杨硕 | 金文俊 | 黄海蒙 | 王军 | 周得宝 | 赵阳阳 | 董召荣 | 宋贺
{"title":"耕层土层交换对土壤氮素关键转化过程和玉米氮素利用的影响","authors":"杨硕 | 金文俊 | 黄海蒙 | 王军 | 周得宝 | 赵阳阳 | 董召荣 | 宋贺","doi":"10.13930/j.cnki.cjea.190265","DOIUrl":"https://doi.org/10.13930/j.cnki.cjea.190265","url":null,"abstract":"","PeriodicalId":10032,"journal":{"name":"Chinese Journal of Eco-agriculture","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142052372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
矿山废水灌溉区农田土壤N 2 O的产生及释放机制研究 矿山废水灌溉区农田土壤N 2 O的产生及释放机制研究
Q3 Agricultural and Biological Sciences Pub Date : 2019-01-01 DOI: 10.13930/J.CNKI.CJEA.180568
常伊梅林, Chang Yimeilin, 唐常源, Tang Changyuan, 李杏, Li Xing, 李锐, Li Rui, 曹英杰, Cao Yingjie
农田系统是温室气体N2O的主要排放源,目前对酸性矿山废水(acid mine drainage,AMD)灌溉影响下,农田土壤剖面N2O的来源识别、转换机制及其控制因子缺乏深入研究。本文选择广东省大宝山矿区下游沿岸水稻田和甘蔗田两种典型农田,针对酸性矿山废水灌溉区(上坝村)和天然来水灌溉区(连心村),对土壤理化性质、重金属含量及包气带N2O浓度、同位素特征值进行了测定,定量计算了硝化和反硝化作用对土壤中N2O的贡献比和N2O转化为N2的还原比,评价了其相关影响因素。结果表明:在AMD影响下,灌区农田土壤剖面N2O浓度均高于同种作物类型天然来水区土壤,同种灌溉处理下甘蔗田土壤N2O浓度高于水稻田。甘蔗田表层土壤(0~30 cm)反硝化作用对N2O产生量的贡献比高于硝化作用,约71.29% N2O由反硝化作用产生。AMD灌区甘蔗田土壤剖面中N2O还原成N2的比例随深度增加逐渐减小,在N2O浓度峰值处仅有15.54% N2O被还原成为N2,而天然来水区N2O还原成N2的平均比率高达49.80%。这表明较弱的土壤N2O还原能力导致较高浓度的N2O残留在土壤中。相关性分析表明,AMD灌溉通过改变上坝村土壤的pH、重金属含量、含水率从而改变了土壤N2O的来源途径及还原能力。组合同位素特征值溯源法有效地揭示了农田土壤N2O的来源和AMD灌区土壤的潜在生态风险,为日后的治理修复工作提供了科学依据。
农田系统是温室气体N2O的主要排放源,目前对酸性矿山废水(acid mine drainage,AMD)灌溉影响下,农田土壤剖面N2O的来源识别、转换机制及其控制因子缺乏深入研究。本文选择广东省大宝山矿区下游沿岸水稻田和甘蔗田两种典型农田,针对酸性矿山废水灌溉区(上坝村)和天然来水灌溉区(连心村),对土壤理化性质、重金属含量及包气带N2O浓度、同位素特征值进行了测定,定量计算了硝化和反硝化作用对土壤中N2O的贡献比和N2O转化为N2的还原比,评价了其相关影响因素。结果表明:在AMD影响下,灌区农田土壤剖面N2O浓度均高于同种作物类型天然来水区土壤,同种灌溉处理下甘蔗田土壤N2O浓度高于水稻田。甘蔗田表层土壤(0~30 cm)反硝化作用对N2O产生量的贡献比高于硝化作用,约71.29% N2O由反硝化作用产生。AMD灌区甘蔗田土壤剖面中N2O还原成N2的比例随深度增加逐渐减小,在N2O浓度峰值处仅有15.54% N2O被还原成为N2,而天然来水区N2O还原成N2的平均比率高达49.80%。这表明较弱的土壤N2O还原能力导致较高浓度的N2O残留在土壤中。相关性分析表明,AMD灌溉通过改变上坝村土壤的pH、重金属含量、含水率从而改变了土壤N2O的来源途径及还原能力。组合同位素特征值溯源法有效地揭示了农田土壤N2O的来源和AMD灌区土壤的潜在生态风险,为日后的治理修复工作提供了科学依据。
{"title":"矿山废水灌溉区农田土壤N 2 O的产生及释放机制研究","authors":"常伊梅林, Chang Yimeilin, 唐常源, Tang Changyuan, 李杏, Li Xing, 李锐, Li Rui, 曹英杰, Cao Yingjie","doi":"10.13930/J.CNKI.CJEA.180568","DOIUrl":"https://doi.org/10.13930/J.CNKI.CJEA.180568","url":null,"abstract":"农田系统是温室气体N2O的主要排放源,目前对酸性矿山废水(acid mine drainage,AMD)灌溉影响下,农田土壤剖面N2O的来源识别、转换机制及其控制因子缺乏深入研究。本文选择广东省大宝山矿区下游沿岸水稻田和甘蔗田两种典型农田,针对酸性矿山废水灌溉区(上坝村)和天然来水灌溉区(连心村),对土壤理化性质、重金属含量及包气带N2O浓度、同位素特征值进行了测定,定量计算了硝化和反硝化作用对土壤中N2O的贡献比和N2O转化为N2的还原比,评价了其相关影响因素。结果表明:在AMD影响下,灌区农田土壤剖面N2O浓度均高于同种作物类型天然来水区土壤,同种灌溉处理下甘蔗田土壤N2O浓度高于水稻田。甘蔗田表层土壤(0~30 cm)反硝化作用对N2O产生量的贡献比高于硝化作用,约71.29% N2O由反硝化作用产生。AMD灌区甘蔗田土壤剖面中N2O还原成N2的比例随深度增加逐渐减小,在N2O浓度峰值处仅有15.54% N2O被还原成为N2,而天然来水区N2O还原成N2的平均比率高达49.80%。这表明较弱的土壤N2O还原能力导致较高浓度的N2O残留在土壤中。相关性分析表明,AMD灌溉通过改变上坝村土壤的pH、重金属含量、含水率从而改变了土壤N2O的来源途径及还原能力。组合同位素特征值溯源法有效地揭示了农田土壤N2O的来源和AMD灌区土壤的潜在生态风险,为日后的治理修复工作提供了科学依据。","PeriodicalId":10032,"journal":{"name":"Chinese Journal of Eco-agriculture","volume":"27 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66581621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
不忘初心 砥砺奋进 植根农业40年历程:祝贺中国科学院遗传与发育生物学研究所农业资源研究中心成立40周年 不忘初心 砥砺奋进 植根农业40年历程:祝贺中国科学院遗传与发育生物学研究所农业资源研究中心成立40周年
Q3 Agricultural and Biological Sciences Pub Date : 2018-10-01 DOI: 10.13930/J.CNKI.CJEA.180797
胡春胜, Hu Chunsheng
本文回顾总结了中国科学院遗传与发育生物学研究所农业资源研究中心(原石家庄农业现代化研究所)成立40年来的主要科研历程与业绩。40年来,不忘初心,不断探索我国农业现代化发展道路与模式,20世纪70年代末探索了农业机械化示范模式,80年代开展了恢复型生态农业模式示范,90年代开展了资源节约型农业模式示范,21世纪初探索了智慧农业和生态循环农业模式;砥砺奋进,不断创新农业系统调控理论与技术体系,创建了农田SAPC水分传输与界面调控理论,量化了农田氮素通量过程,建立了农业面源污染防控理论与技术,发展了咸水安全灌溉理论,建立了林业生态工程理论,创建了食物链模型,创新小麦育种体系;扎根农业,组织了渤海粮仓科技示范工程等大规模区域农业示范,不断引领开展区域示范服务;放眼世界,不断拓展国际合作与创新平台,为我国农业绿色发展做出重大贡献。
本文回顾总结了中国科学院遗传与发育生物学研究所农业资源研究中心(原石家庄农业现代化研究所)成立40年来的主要科研历程与业绩。40年来,不忘初心,不断探索我国农业现代化发展道路与模式,20世纪70年代末探索了农业机械化示范模式,80年代开展了恢复型生态农业模式示范,90年代开展了资源节约型农业模式示范,21世纪初探索了智慧农业和生态循环农业模式;砥砺奋进,不断创新农业系统调控理论与技术体系,创建了农田SAPC水分传输与界面调控理论,量化了农田氮素通量过程,建立了农业面源污染防控理论与技术,发展了咸水安全灌溉理论,建立了林业生态工程理论,创建了食物链模型,创新小麦育种体系;扎根农业,组织了渤海粮仓科技示范工程等大规模区域农业示范,不断引领开展区域示范服务;放眼世界,不断拓展国际合作与创新平台,为我国农业绿色发展做出重大贡献。
{"title":"不忘初心 砥砺奋进 植根农业40年历程:祝贺中国科学院遗传与发育生物学研究所农业资源研究中心成立40周年","authors":"胡春胜, Hu Chunsheng","doi":"10.13930/J.CNKI.CJEA.180797","DOIUrl":"https://doi.org/10.13930/J.CNKI.CJEA.180797","url":null,"abstract":"本文回顾总结了中国科学院遗传与发育生物学研究所农业资源研究中心(原石家庄农业现代化研究所)成立40年来的主要科研历程与业绩。40年来,不忘初心,不断探索我国农业现代化发展道路与模式,20世纪70年代末探索了农业机械化示范模式,80年代开展了恢复型生态农业模式示范,90年代开展了资源节约型农业模式示范,21世纪初探索了智慧农业和生态循环农业模式;砥砺奋进,不断创新农业系统调控理论与技术体系,创建了农田SAPC水分传输与界面调控理论,量化了农田氮素通量过程,建立了农业面源污染防控理论与技术,发展了咸水安全灌溉理论,建立了林业生态工程理论,创建了食物链模型,创新小麦育种体系;扎根农业,组织了渤海粮仓科技示范工程等大规模区域农业示范,不断引领开展区域示范服务;放眼世界,不断拓展国际合作与创新平台,为我国农业绿色发展做出重大贡献。","PeriodicalId":10032,"journal":{"name":"Chinese Journal of Eco-agriculture","volume":"26 1","pages":"1423-1428"},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43336447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chinese Journal of Eco-agriculture
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1